Andrey A Gorchakov

Harvard Medical School, Boston, Massachusetts, United States

Are you Andrey A Gorchakov?

Claim your profile

Publications (22)249.5 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Heterochromatin protein 1 (HP1a) has conserved roles in gene silencing and heterochromatin and is also implicated in transcription, DNA replication, and repair. Here we identify chromatin-associated protein and RNA interactions of HP1a by BioTAP-XL mass spectrometry and sequencing from Drosophila S2 cells, embryos, larvae, and adults. Our results reveal an extensive list of known and novel HP1a-interacting proteins, of which we selected three for validation. A strong novel interactor, dADD1 (Drosophila ADD1) (CG8290), is highly enriched in heterochromatin, harbors an ADD domain similar to human ATRX, displays selective binding to H3K9me2 and H3K9me3, and is a classic genetic suppressor of position-effect variegation. Unexpectedly, a second hit, HIPP1 (HP1 and insulator partner protein-1) (CG3680), is strongly connected to CP190-related complexes localized at putative insulator sequences throughout the genome in addition to its colocalization with HP1a in heterochromatin. A third interactor, the histone methyltransferase MES-4, is also enriched in heterochromatin. In addition to these protein-protein interactions, we found that HP1a selectively associated with a broad set of RNAs transcribed from repetitive regions. We propose that this rich network of previously undiscovered interactions will define how HP1a complexes perform their diverse functions in cells and developing organisms.
    Genes & development. 07/2014; 28(13):1445-60.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the composition of epigenetic regulators remains an important challenge in chromatin biology. Traditional biochemical analysis of chromatin-associated complexes requires their release from DNA under conditions that can also disrupt key interactions. Here we develop a complementary approach (BioTAP-XL), in which cross-linking (XL) enhances the preservation of protein interactions and also allows the analysis of DNA targets under the same tandem affinity purification (BioTAP) regimen. We demonstrate the power of BioTAP-XL through analysis of human EZH2, a core subunit of polycomb repressive complex 2 (PRC2). We identify and validate two strong interactors, C10orf12 and C17orf96, which display enrichment with EZH2-BioTAP at levels similar to canonical PRC2 components (SUZ12, EED, MTF2, JARID2, PHF1, and AEBP2). ChIP-seq analysis of BioTAP-tagged C10orf12 or C17orf96 revealed the similarity of each binding pattern with the location of EZH2 and the H3K27me3-silencing mark, validating their physical interaction with PRC2 components. Interestingly, analysis by mass spectrometry of C10orf12 and C17orf96 interactions revealed that these proteins may be mutually exclusive PRC2 subunits that fail to interact with each other or with JARID2 and AEBP2. C10orf12, in addition, shows a strong and unexpected association with components of the EHMT1/2 complex, thus potentially connecting PRC2 to another histone methyltransferase. Similarly, results from CBX4-BioTAP protein pulldowns are consistent with reports of a diversity of PRC1 complexes. Our results highlight the importance of reciprocal analyses of multiple subunits and suggest that iterative use of BioTAP-XL has strong potential to reveal networks of chromatin-based interactions in higher organisms.
    Proceedings of the National Academy of Sciences 02/2014; 111(7):2488-93. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sex chromosomes originated from autosomes but have evolved a highly specialized chromatin structure. Drosophila Y chromosomes are composed entirely of silent heterochromatin, while male X chromosomes have highly accessible chromatin and are hypertranscribed as a result of dosage compensation. Here, we dissect the molecular mechanisms and functional pressures driving heterochromatin formation and dosage compensation of the recently formed neo-sex chromosomes of Drosophila miranda. We show that the onset of heterochromatin formation on the neo-Y is triggered by an accumulation of repetitive DNA. The neo-X has evolved partial dosage compensation and we find that diverse mutational paths have been utilized to establish several dozen novel binding consensus motifs for the dosage compensation complex on the neo-X, including simple point mutations at pre-binding sites, insertion and deletion mutations, microsatellite expansions, or tandem amplification of weak binding sites. Spreading of these silencing or activating chromatin modifications to adjacent regions results in massive mis-expression of neo-sex linked genes, and little correspondence between functionality of genes and their silencing on the neo-Y or dosage compensation on the neo-X. Intriguingly, the genomic regions being targeted by the dosage compensation complex on the neo-X and those becoming heterochromatic on the neo-Y show little overlap, possibly reflecting different propensities along the ancestral chromosome that formed the sex chromosome to adopt active or repressive chromatin configurations. Our findings have broad implications for current models of sex chromosome evolution, and demonstrate how mechanistic constraints can limit evolutionary adaptations. Our study also highlights how evolution can follow predictable genetic trajectories, by repeatedly acquiring the same 21-bp consensus motif for recruitment of the dosage compensation complex, yet utilizing a diverse array of random mutational changes to attain the same phenotypic outcome.
    PLoS Biology 11/2013; 11(11):e1001711. · 12.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dosage compensation has arisen in response to the evolution of distinct male (XY) and female (XX) karyotypes. In Drosophila melanogaster, the MSL complex increases male X transcription approximately twofold. X-specific targeting is thought to occur through sequence-dependent binding to chromatin entry sites (CESs), followed by spreading in cis to active genes. We tested this model by asking how newly evolving sex chromosome arms in Drosophila miranda acquired dosage compensation. We found evidence for the creation of new CESs, with the analogous sequence and spacing as in D. melanogaster, providing strong support for the spreading model in the establishment of dosage compensation.
    Genes & development 04/2013; 27(8):853-8. · 12.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: X-chromosome dosage compensation by the MSL (male-specific lethal) complex is required in Drosophila melanogaster to increase gene expression from the single male X to equal that of both female X chromosomes. Instead of focusing solely on protein complexes released from DNA, here we used chromatin-interacting protein MS (ChIP-MS) to identify MSL interactions on cross-linked chromatin. We identified MSL-enriched histone modifications, including histone H4 Lys16 acetylation and histone H3 Lys36 methylation, and CG4747, a putative Lys36-trimethylated histone H3 (H3K36me3)-binding protein. CG4747 is associated with the bodies of active genes, coincident with H3K36me3, and is mislocalized in the Set2 mutant lacking H3K36me3. CG4747 loss of function in vivo results in partial mislocalization of the MSL complex to autosomes, and RNA interference experiments confirm that CG4747 and Set2 function together to facilitate targeting of the MSL complex to active genes, validating the ChIP-MS approach.
    Nature Structural & Molecular Biology 01/2013; · 11.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromatin insulator elements and associated proteins have been proposed to partition eukaryotic genomes into sets of independently regulated domains. Here we test this hypothesis by quantitative genome-wide analysis of insulator protein binding to Drosophila chromatin. We find distinct combinatorial binding of insulator proteins to different classes of sites and uncover a novel type of insulator element that binds CP190 but not any other known insulator proteins. Functional characterization of different classes of binding sites indicates that only a small fraction act as robust insulators in standard enhancer-blocking assays. We show that insulators restrict the spreading of the H3K27me3 mark but only at a small number of Polycomb target regions and only to prevent repressive histone methylation within adjacent genes that are already transcriptionally inactive. RNAi knockdown of insulator proteins in cultured cells does not lead to major alterations in genome expression. Taken together, these observations argue against the concept of a genome partitioned by specialized boundary elements and suggest that insulators are reserved for specific regulation of selected genes.
    Genome Research 07/2012; · 14.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at "entry sites" that contain a consensus sequence motif ("MSL recognition element" or MRE). However, this motif is only ∼2 fold enriched on X, and only a fraction of the motifs on X are initially targeted. Here we ask whether chromatin context could distinguish between utilized and non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal proteins mapped in the modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells (which contain MSL complex) and female Kc cells (which lack the complex), we find that the presence of active chromatin modifications, together with an elevated local GC content in the surrounding sequences, has strong predictive value for functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation around these sites and a relative increase in X chromosome transcription. Collectively, our results support a model in which a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16 acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our analysis can serve as a model for identifying chromatin and local sequence features that may contribute to selection of functional protein binding sites in the genome.
    PLoS Genetics 04/2012; 8(4):e1002646. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic genomes are packaged in two basic forms, euchromatin and heterochromatin. We have examined the composition and organization of Drosophila melanogaster heterochromatin in different cell types using ChIP-array analysis of histone modifications and chromosomal proteins. As anticipated, the pericentric heterochromatin and chromosome 4 are on average enriched for the "silencing" marks H3K9me2, H3K9me3, HP1a, and SU(VAR)3-9, and are generally depleted for marks associated with active transcription. The locations of the euchromatin-heterochromatin borders identified by these marks are similar in animal tissues and most cell lines, although the amount of heterochromatin is variable in some cell lines. Combinatorial analysis of chromatin patterns reveals distinct profiles for euchromatin, pericentric heterochromatin, and the 4th chromosome. Both silent and active protein-coding genes in heterochromatin display complex patterns of chromosomal proteins and histone modifications; a majority of the active genes exhibit both "activation" marks (e.g., H3K4me3 and H3K36me3) and "silencing" marks (e.g., H3K9me2 and HP1a). The hallmark of active genes in heterochromatic domains appears to be a loss of H3K9 methylation at the transcription start site. We also observe complex epigenomic profiles of intergenic regions, repeated transposable element (TE) sequences, and genes in the heterochromatic extensions. An unexpectedly large fraction of sequences in the euchromatic chromosome arms exhibits a heterochromatic chromatin signature, which differs in size, position, and impact on gene expression among cell types. We conclude that patterns of heterochromatin/euchromatin packaging show greater complexity and plasticity than anticipated. This comprehensive analysis provides a foundation for future studies of gene activity and chromosomal functions that are influenced by or dependent upon heterochromatin.
    Genome Research 02/2011; 21(2):147-63. · 14.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have tested the specificity and utility of more than 200 antibodies raised against 57 different histone modifications in Drosophila melanogaster, Caenorhabditis elegans and human cells. Although most antibodies performed well, more than 25% failed specificity tests by dot blot or western blot. Among specific antibodies, more than 20% failed in chromatin immunoprecipitation experiments. We advise rigorous testing of histone-modification antibodies before use, and we provide a website for posting new test results (http://compbio.med.harvard.edu/antibodies/).
    Nature Structural & Molecular Biology 01/2011; 18(1):91-3. · 11.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.
    Science 12/2010; 330(6012):1787-1797. · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.
    Nature 12/2010; 471(7339):480-5. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.
    Science 12/2010; 330(6012):1787-97. · 31.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For the dosage compensation to occur, genes on the single male X chromosomes in Drosophila must be selectively bound and acetylated by the ribonucleoprotein complex called MSL complex. It remained unknown how such exquisite specificity is achieved, and whether specific DNA sequences were involved. In the present work we demonstrate that it is transcription of the gene on the X chromosome that is important for MSL targeting, irrespective of gene origin and DNA sequence.
    Russian Journal of Genetics 01/2010; 46(10):1263-1266. · 0.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dosage compensation in Drosophila melanogaster males is achieved via targeting of male-specific lethal (MSL) complex to X-linked genes. This is proposed to involve sequence-specific recognition of the X at approximately 150-300 chromatin entry sites, and subsequent spreading to active genes. Here we ask whether the spreading step requires transcription and is sequence-independent. We find that MSL complex binds, acetylates, and up-regulates autosomal genes inserted on X, but only if transcriptionally active. We conclude that a long-sought specific DNA sequence within X-linked genes is not obligatory for MSL binding. Instead, linkage and transcription play the pivotal roles in MSL targeting irrespective of gene origin and DNA sequence.
    Genes & development 10/2009; 23(19):2266-71. · 12.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Drosophila MSL complex associates with active genes specifically on the male X chromosome to acetylate histone H4 at lysine 16 and increase expression approximately 2-fold. To date, no DNA sequence has been discovered to explain the specificity of MSL binding. We hypothesized that sequence-specific targeting occurs at "chromatin entry sites," but the majority of sites are sequence independent. Here we characterize 150 potential entry sites by ChIP-chip and ChIP-seq and discover a GA-rich MSL recognition element (MRE). The motif is only slightly enriched on the X chromosome ( approximately 2-fold), but this is doubled when considering its preferential location within or 3' to active genes (>4-fold enrichment). When inserted on an autosome, a newly identified site can direct local MSL spreading to flanking active genes. These results provide strong evidence for both sequence-dependent and -independent steps in MSL targeting of dosage compensation to the male X chromosome.
    Cell 09/2008; 134(4):599-609. · 31.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SUUR (Suppressor of Under-Replication) protein is responsible for late replication and, as a consequence, for DNA underreplication of intercalary and pericentric heterochromatin in Drosophila melanogaster polytene chromosomes. However, the mechanism by which SUUR slows down the replication process is not clear. To identify possible partners for SUUR we performed a yeast two-hybrid screen using full-length SUUR as bait. This identified HP1, the well-studied heterochromatin protein, as a strong SUUR interactor. Furthermore, we have determined that the central region of SUUR is necessary and sufficient for interaction with the C-terminal part of HP1, which contains the hinge and chromoshadow domains. In addition, recruitment of SUUR to ectopic HP1 sites on chromosomes provides evidence for their association in vivo. Indeed, we found that the distributions of SUUR and HP1 on polytene chromosomes are interdependent: both absence and overexpression of HP1 prevent SUUR from chromosomal binding, whereas SUUR overexpression causes redistribution of HP1 to numerous sites occupied by SUUR. Finally, HP1 binds to intercalary heterochromatin when histone methyltransferase activity of SU(VAR)3-9 is increased. We propose that interaction with HP1 is crucial for the association of SUUR with chromatin.
    Journal of Cell Science 06/2008; 121(Pt 10):1693-703. · 5.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We studied whether interbands can be ectopically formed in Drosophila melanogaster polytene chromosomes. For comparative purposes, two types of P-element constructs were used. The first type was represented by P-element based insertions into compact bands. Sequences of these insertions or adjacent genomic sequences could be activated ectopically either by GAL4 or by dosage compensation machinery. In the second type, the DNA from transcriptionally silent interbands was positioned between the FRT sites, and was flanked by DNA sequences of genes that were also inactive in salivary glands. Electron microscopy analysis of salivary gland polytene chromosomes demonstrated that both types of constructs formed distinct, yet morphologically similar interbands. Notably, the second class of transposon insertions appeared in polytene chromosomes as two bands separated by one interband. Excision of interband material from such insertions resulted in fusion of newly appeared bands into a single band. We were able to confirm by molecular means that the DNA sequences in integrated constructs were intact, that chromatin organization of this DNA mimicked that of native interbands, and that it was accurately excised from the constructs by FLP. Thus, we demonstrate that transfer of interband DNA into a silent genetic environment does not compromise interband formation. Our results do not support the idea of the existence of distinct cytogenetic "band + interband" units, furthermore, they suggest the autonomy of the decompacted state of interbands.
    Genetica 04/2008; 132(3):267-79. · 1.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here we describe the construction of a new vector, pMH, designed for protein expression in E. coli. The vector provides inducible and powerful T7 RNA polymerase driven transcription of the sequences introduced, and a polylinker comprising now 10 most widely used restriction sites, which allows virtually any sequence to be cloned. Cloning in-frame with the N-terminal (c-myc)3-(His)6-tag makes it possible, first, to easily affinity purify the proteins being expressed and, second, to detect the recombinant proteins with the antibodies specific for any of the tags when protein-specific antibodies are unavailable. General utility of pMH was demonstrated by successful expression in E. coli and further purification of Drosophila melanogaster Chriz (CG10712) product and of a number of its C-terminal truncations, with the approximate protein yeild constituting 10 mg/l culture.
    Molekuliarnaia biologiia 01/2004; 38(4):713-6.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using electron microscopic (EM) data on the formation of a novel band from the P-element material after its insertion in the interband and the procedure of P-target rescue, DNA interband regions 3A5/A6, and 60E8-9/E10 of Drosophila melanogaster polytene chromosomes were cloned and sequenced. EM analysis of the 3C region have shown that the formation of the full-size 3C5-6/C7 interband requires a 880-bp DNA sequences removed by deletion Df(1)faswb. A comparison of DNA sequences of six bands, two of which were obtained in the present work and four were described earlier, demonstrated the uniqueness of each of them in the Drosophila genome and heterogeneity of their molecular organization. Interband 60E8-9/E10 contains gene rpl19 transcribed throughout the development, in particular in salivary glands. In the other interbands examined 5' and 3' nontranslated gene regions are located. These results suggest that Drosophila interbands may contain both housekeeping genes and regulatory sequences of currently inactive genes from adjacent bands.
    Genetika 12/2001; 37(11):1486-96. · 0.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using electron microscopic (EM) data on the formation of a novel band from theP-element material after its insertion in the interband and the procedure of P-target rescue, DNA interband regions 3A5/A6, 3C5-6/C7, and 60E8-9/E10 of Drosophila melanogasterpolytene chromosomes were cloned and sequenced. EM analysis of the 3C region have shown that the formation of the full-size 3C5-6/C7 interband requires a 880-bp DNA sequence removed by deletion Df(1)fa swb. A comparison of DNA sequences of six bands, two of which were obtained in the present work and four were described earlier, demonstrated the uniqueness of each of them in the Drosophilagenome and heterogeneity of their molecular organization. Interband 60E8-9/E10 contains gene rpl19transcribed throughout the development, in particular in salivary glands. In the other interbands examined 5" and 3" nontranslated gene regions are located. These results suggest that Drosophilainterbands may contain both housekeeping genes and regulatory sequences of currently inactive genes from adjacent bands.
    Russian Journal of Genetics 10/2001; 37(11):1247-1256. · 0.43 Impact Factor

Publication Stats

934 Citations
249.50 Total Impact Points

Institutions

  • 2009–2014
    • Harvard Medical School
      • Department of Medicine
      Boston, Massachusetts, United States
  • 2009–2013
    • Brigham and Women's Hospital
      • Division of Genetics
      Boston, MA, United States
  • 2001
    • Russian Academy of Sciences
      • Institute of Chemical Biology and Fundamental Medicine
      Moskva, Moscow, Russia