E. Breedt

The University of Warwick, Coventry, England, United Kingdom

Are you E. Breedt?

Claim your profile

Publications (41)164.93 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present new eclipse observations of the polar (i.e. semi-detached magnetic white dwarf + M-dwarf binary) HU Aqr, and mid-egress times for each eclipse, which continue to be observed increasingly early. Recent eclipses occurred more than 70 seconds earlier than the prediction from the latest model that invoked a single circumbinary planet to explain the observed orbital period variations, thereby conclusively proving this model to be incorrect. Using ULTRACAM data, we show that mid-egress times determined for simultaneous data taken at different wavelengths agree with each other. The large variations in the observed eclipse times cannot be explained by planetary models containing up to three planets, because of poor fits to the data as well as orbital instability on short time scales. The peak-to-peak amplitude of the O-C diagram of almost 140 seconds is also too great to be caused by Applegate's mechanism, movement of the accretion spot on the surface of the white dwarf, or by asynchronous rotation of the white dwarf. What does cause the observed eclipse time variations remains a mystery.
    09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present high time resolution SDSS-$g'$ and SDSS-$z'$ light curves of the primary eclipse in SDSS J141126.20+200911.1, together with time-resolved X-Shooter spectroscopy and near-infrared $JHK_{s}$ photometry. Our observations confirm the substellar nature of the companion, making SDSS J141126.20+200911.1 the first eclipsing white dwarf/brown dwarf binary known. We measure a (white dwarf model dependent) mass and radius for the brown dwarf companion of $M_{2} = 0.050 \pm 0.002$ $M_{\odot}$ and $R_{2} = 0.072 \pm 0.004$ $M_{\odot}$, respectively. The lack of a robust detection of the companion light in the $z'$-band eclipse constrains the spectral type of the companion to be later than L5. Comparing the NIR photometry to the expected white dwarf flux reveals a clear $K_s$-band excess, suggesting a spectral type in the range L7-T1. The radius measurement is consistent with the predictions of evolutionary models, and suggests a system age in excess of three Gyr. The low companion mass is inconsistent with the inferred spectral type of L7-T1, instead predicting a spectral type nearer T5. This indicates that irradiation of the companion in SDSS J1411 could be causing a significant temperature increase, at least on one hemisphere.
    09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the discovery of strongly variable emission lines from a gaseous disc around the DA white dwarf SDSS J1617+1620, a star previously found to have an infrared excess indicative of a dusty debris disc formed by the tidal disruption of a rocky planetary body. Time-series spectroscopy obtained during the period 2006-2014 has shown the appearance of strong double-peaked Ca II emission lines in 2008. The lines were weak, at best, during earlier observations, and monotonically faded through the remainder of our monitoring. Our observations represent unambiguous evidence for short-term variability in the debris environment of evolved planetary systems. Possible explanations for this extraordinary variability include the impact onto the dusty disc of either a single small rocky planetesimal, or of material from a highly eccentric debris tail. The increase in flux from the emission lines is sufficient that similar events could be detected in the broadband photometry of ongoing and future large-area time domain surveys.
    09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using the Hubble Space Telescope, we detail the first abundance analysis enabled by far-ultraviolet spectroscopy of a low-mass (~0.19 Msun) white dwarf (WD), GALEX J1717+6757, which is in a 5.9-hr binary with a fainter, more-massive companion. We see absorption from nine metals, including roughly solar abundances of Ca, Fe, Ti, and P. We detect a significantly sub-solar abundance of C, and put upper limits on N and O that are also markedly sub-solar. Updated diffusion calculations indicate that all metals should settle out of the atmosphere of this 14,900 K, log(g) = 5.67 WD in the absence of radiative forces in less than 20 yr, orders of magnitude faster than the cooling age of hundreds of Myr. We demonstrate that ongoing accretion of rocky material that is often the cause of atmospheric metals in isolated, more massive WDs is unlikely to explain the observed abundances in GALEX J1717+6757. Using new radiative levitation calculations, we determine that radiative forces can counteract diffusion and support many but not all of the elements present in the atmosphere of this WD; radiative levitation cannot, on its own, explain all of the observed abundance patterns, and additional mechanisms such as rotational mixing may be required. Finally, we detect both primary and secondary eclipses using ULTRACAM high-speed photometry, which we use to constrain the low-mass WD radius and rotation rate as well as update the ephemeris from the discovery observations of this WD+WD binary.
    07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lags measured from correlated X-ray/UV/optical monitoring of AGN allow us to determine whether UV/optical variability is driven by reprocessing of X-rays or X-ray variability is driven by UV/optical seed photon variations. We present the results of the largest study to date of the relationship between the X-ray, UV and optical variability in an AGN with 554 observations, over a 750d period, of the Seyfert 1 galaxy NGC 5548 with Swift. There is a good overall correlation between the X-ray and UV/optical bands, particularly on short timescales (tens of days). These bands lag the X-ray band with lags which are proportional to wavelength to the power 1.23+/-0.31. This power is very close to the power (4/3) expected if short timescale UV/optical variability is driven by reprocessing of X-rays by a surrounding accretion disc. The observed lags, however, are longer than expected from a standard Shakura-Sunyaev accretion disc with X-ray heating, given the currently accepted black hole mass and accretion rate values, but can be explained with a slightly larger mass and accretion rate, and a generally hotter disc. Some long term UV/optical variations are not paralleled exactly in the X-rays, suggesting an additional component to the UV/optical variability arising perhaps from accretion rate perturbations propagating inwards through the disc.
    07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over six years of operation, the Catalina Real-time Transient Survey (CRTS) has identified 1043 cataclysmic variable (CV) candidates --- the largest sample of CVs from a single survey to date. Here we provide spectroscopic identification of 85 systems fainter than g<19, including three AMCVn binaries, one helium-enriched CV, one polar and one new eclipsing CV. We analyse the outburst properties of the full sample and show that it contains a large fraction of low accretion rate CVs with long outburst recurrence times. We argue that most of the high accretion rate dwarf novae in the survey footprint have already been found and that future CRTS discoveries will be mostly low accretion rate systems. We find that CVs with white dwarf dominated spectra have significantly fewer outbursts in their CRTS light curves compared to disc-dominated CVs, reflecting the difference in their accretion rates. Comparing the CRTS sample to other samples of CVs, we estimate the overall external completeness to be 23.6 per cent, but show that as much as 56 per cent of CVs have variability amplitudes that are too small to be selected using the transient selection criteria employed by current ground-based surveys. The full table of CRTS CVs, including their outburst and spectroscopic properties examined in this paper, is provided in the online materials.
    Monthly Notices of the Royal Astronomical Society 07/2014; 443(4):3174. · 4.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The AM Canum Venaticorum (AM CVn) binaries are a rare group of ultra-short period, mass-transferring white dwarf binaries, some of which may be Type Ia supernova progenitors. More than a third of the total known population of AM CVn binaries have been discovered via the Sloan Digital Sky Survey (SDSS). We discuss our search for new AM CVns in the SDSS spectroscopic database, and present two new AM CVns discovered in SDSS-III spectroscopy. Using the radial velocity variations of the emission lines, we measure a possible orbital period of 59.6 +/- 2.7 minutes for SDSS J113732.32+405458.3. This agrees with our expectation based on the appearance of its spectrum, that it is a long period AM CVn binary. Since our search of SDSS spectroscopy has revealed only these two new systems, it is unlikely that we have missed a large population of AM CVn binaries, and their discovery should have little effect on previous calculations of the AM CVn space density.
    12/2013; 439(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present high-quality ULTRACAM photometry of the eclipsing detached double-white dwarf binary NLTT 11748. This system consists of a carbon/oxygen white dwarf and an extremely-low mass (< 0.2 Msun) helium-core white dwarf in a 5.6 hr orbit. To date such extremely-low mass WDs, which can have thin, stably-burning outer layers, have been modeled via poorly-constrained atmosphere and cooling calculations where uncertainties in the detailed structure can strongly influence the eventual fates of these systems when mass-transfer begins. With precise (individual precision ~1%) high-cadence (~2 s) multi-color photometry of multiple primary and secondary eclipses spanning >1.5 yr, we constrain the masses and radii of both objects in the NLTT 11748 system to a statistical uncertainty of a few percent. However, we find that overall uncertainty in the thickness of the envelope of the secondary carbon/oxygen white dwarf leads to a larger (~13%) systematic uncertainty in the primary He WD's mass. Over the full range of possible envelope thicknesses we find that our primary mass (0.136-0.162 Msun) and surface gravity (log(g)=6.32-6.38; radii are 0.0423-0.0433 Rsun) constraints do not agree with previous spectroscopic determinations. We use precise eclipse timing to detect the Romer delay at 7 sigma significance, providing an additional weak constraint on the masses and limiting the eccentricity to e*cos(omega)= -4e-5 +/- 5e-5. Finally, we use multi-color data to constrain the secondary's effective temperature (7600+/-120 K) and cooling age (1.6-1.7 Gyr).
    The Astrophysical Journal 11/2013; 780(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The eclipsing white dwarf plus main-sequence binary NN Serpentis provides one of the most convincing cases for the existence of circumbinary planets around evolved binaries. The exquisite timing precision provided by the deep eclipse of the white dwarf has revealed complex variations in the eclipse arrival times over the last few decades. These variations have been interpreted as the influence of two planets in orbit around the binary. Recent studies have proved that such a system is dynamically stable over the current lifetime of the binary. However, the existence of such planets is by no means proven and several alternative mechanisms have been proposed that could drive similar variations. One of these is apsidal precession, which causes the eclipse times of eccentric binaries to vary sinusoidally on many year timescales. In this paper we present timing data for the secondary eclipse of NN Ser and show that they follow the same trend seen in the primary eclipse times, ruling out apsidal precession as a possible cause for the variations. This result leaves no alternatives to the planetary interpretation for the observed period variations, although we still do not consider their existence as proven. Our data limits the eccentricity of NN Ser to e<0.001. We also detect a 3.3+/-1.0 second delay in the arrival times of the secondary eclipses relative to the best planetary model. This delay is consistent with the expected 2.84+/-0.04 second Romer delay of the binary, and is the first time this effect has been detected in a white dwarf plus M dwarf system.
    Monthly Notices of the Royal Astronomical Society 11/2013; · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The star 1SWASP J024743.37-251549.2 was recently discovered to be a binary star in which an A-type dwarf star eclipses the remnant of a disrupted red giant star (WASP0247-25B). The remnant is in a rarely-observed state evolving to higher effective temperatures at nearly constant luminosity prior to becoming a very low-mass white dwarf composed almost entirely of helium, i.e., it is a pre-He-WD. We have used the WASP photometric database to find 17 eclipsing binary stars with orbital periods P=0.7 to 2.2 days with similar lightcurves to 1SWASP J024743.37-251549.2. The only star in this group previously identified as a variable star is the brightest one, EL CVn, which we adopt as the prototype for this class of eclipsing binary star. The characteristic lightcurves of EL CVn-type stars show a total eclipse by an A-type dwarf star of a smaller, hotter star and a secondary eclipse of comparable depth to the primary eclipse. We have used new spectroscopic observations for 6 of these systems to confirm that the companions to the A-type stars in these binaries have very low masses (approximately 0.2 solar masses). This includes the companion to EL CVn which was not previously known to be a pre-He-WD. EL CVn-type binary star systems will enable us to study the formation of very low-mass white dwarfs in great detail, particularly in those cases where the pre-He-WD star shows non-radial pulsations similar to those recently discovered in WASP0247-25B.
    Monthly Notices of the Royal Astronomical Society 10/2013; 437(2). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present 25 new eclipse times of the white dwarf binary NN Ser taken with the high-speed camera ULTRACAM on the WHT and NTT, the RISE camera on the Liverpool Telescope, and HAWK-I on the VLT to test the two-planet model proposed to explain variations in its eclipse times measured over the last 25 years. The planetary model survives the test with flying colours, correctly predicting a progressive lag in eclipse times of 36 seconds that has set in since 2010 compared to the previous 8 years of precise times. Allowing both orbits to be eccentric, we find orbital periods of 7.9 +/- 0.5 yr and 15.3 +/- 0.3 yr, and masses of 2.3 +/- 0.5 Mjup and 7.3 +/- 0.3 Mjup. We also find dynamically long-lived orbits consistent with the data, associated with 2:1 and 5:2 period ratios. The data scatter by 0.07 seconds relative to the best-fit model, by some margin the most precise of any of the proposed eclipsing compact object planet hosts. Despite the high precision, degeneracy in the orbit fits prevents a significant measurement of a period change of the binary and of N-body effects. Finally, we point out a major flaw with a previous dynamical stability analysis of NN Ser, and by extension, with a number of analyses of similar systems.
    Monthly Notices of the Royal Astronomical Society 10/2013; 437(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low-mass white-dwarf stars are the remnants of disrupted red-giant stars in binary millisecond pulsars and other exotic binary star systems. Some low-mass white dwarfs cool rapidly, whereas others stay bright for millions of years because of stable fusion in thick surface hydrogen layers. This dichotomy is not well understood, so the potential use of low-mass white dwarfs as independent clocks with which to test the spin-down ages of pulsars or as probes of the extreme environments in which low-mass white dwarfs form cannot fully be exploited. Here we report precise mass and radius measurements for the precursor to a low-mass white dwarf. We find that only models in which this disrupted red-giant star has a thick hydrogen envelope can match the strong constraints provided by our data. Very cool low-mass white dwarfs must therefore have lost their thick hydrogen envelopes by irradiation from pulsar companions or by episodes of unstable hydrogen fusion (shell flashes). We also find that this low-mass white-dwarf precursor is a type of pulsating star not hitherto seen. The observed pulsation frequencies are sensitive to internal processes that determine whether this star will undergo shell flashes.
    Nature 06/2013; 498(7455):463-465. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present time-resolved spectroscopy and photometry of the dwarf nova SBSS 1108+574, obtained during the 2012 outburst. Its quiescent spectrum is unusually rich in helium, showing broad, double-peaked emission lines from the accretion disc. We measure a line flux ratio HeI 5875/Halpha = 0.81 +/- 0.04, a much higher ratio than typically observed in cataclysmic variables (CVs). The outburst spectrum shows hydrogen and helium in absorption, with weak emission of Halpha and HeI 6678, as well as strong HeII emission. From our photometry, we find the superhump period to be 56.34 +/- 0.18 minutes, in agreement with the previously published result. The spectroscopic period, derived from the radial velocities of the emission lines, is found to be 55.3 +/- 0.8 minutes, consistent with a previously identified photometric orbital period, and significantly below the normal CV period minimum. This indicates that the donor in SBSS 1108+574 is highly evolved. The superhump excess derived from our photometry implies a mass ratio of q = 0.086 +/- 0.014. Our spectroscopy reveals a grazing eclipse of the large outbursting disc. As the disc is significantly larger during outburst, it is unlikely that an eclipse will be detectable in quiescence. The relatively high accretion rate implied by the detection of outbursts, together with the large mass ratio, suggests that SBSS 1108+574 is still evolving towards its period minimum.
    Monthly Notices of the Royal Astronomical Society 01/2013; 431(1). · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To determine the spectral type, the rotational velocity and the radial velocity amplitude of the primary, we obtained 46 high-resolution (R~85000) echelle spectra using the HERMES spectrograph at the 1.2-m Mercator telescope (La Palma, Canary Islands). These were reduced using the standard instrument-specific data reduction pipeline. Additionally, we obtained 29 spectra with the ISIS spectrograph mounted on the 4.2-m William Herschel Telescope (La Palma, Canary Islands). The Kepler data from Q0 (quarter 0), Q1, Q2 and Q3 were retrieved from the public archive (http://archive.stsci.edu/kepler/). The data span 229-d, resulting in a data set of 212-d of observations excluding the gaps. (6 data files).
    VizieR Online Data Catalog. 01/2013; 742:22600.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Catalina Real time Transient Survey (CRTS) identified the variable blue source at RA 00h27m48.41s, Dec -05d59m59.14s as an optical transient on 2012 January 3, after a rapid 1.5 magnitude brightening above its average quiescent magnitude of 18.6(2) (unfiltered). The following observation of the same field (2012 August 13.56 UTC) found the source at a magnitude of 15.95(4), a 2.89 magnitude brightness increase in 295 days.
    The Astronomer's Telegram. 11/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present time-resolved optical spectroscopy of the dwarf nova CSS100603:112253-111037. Its optical spectrum is rich in helium, with broad, double-peaked emission lines produced in an accretion disc. We measure a line flux ratio HeI5876/H_alpha = 1.49 +/- 0.04, a much higher ratio than is typically observed in dwarf novae. The orbital period, as derived from the radial velocity of the line wings, is 65.233 +/- 0.015 minutes. In combination with the previously measured superhump period, this implies an extreme mass ratio of M_2/M_1 = 0.017 +/- 0.004. The H_alpha and HeI6678 emission lines additionally have a narrow central spike, as is often seen in the spectra of AM CVn type stars. Comparing its properties with CVs, AM CVn systems and hydrogen binaries below the CV period minimum, we argue that CSS100603:112253-111037 is the first compelling example of an AM CVn system forming via the evolved CV channel. With the addition of this system, evolved cataclysmic variables (CVs) now account for seven per cent of all known semi-detached white dwarf binaries with Porb < 76 min. Two recently discovered binaries may further increase this figure. Although the selection bias of this sample is not yet well defined, these systems support the evolved CV model as a possible formation channel for ultracompact accreting binaries. The orbital periods of the three ultracompact hydrogen accreting binaries overlap with those of the long period AM CVn stars, but there are currently no known systems in the period range 67 - 76 minutes.
    Monthly Notices of the Royal Astronomical Society 07/2012; 425(4):2548. · 4.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a method to select hot subdwarf stars with A to M-type companions using photometric selection criteria. We cover a wide range in wavelength by combining GALEX ultraviolet data, optical photometry from the SDSS and the Carlsberg Meridian telescope, near-infrared data from 2MASS and UKIDSS. We construct two complimentary samples, one by matching GALEX, CMC and 2MASS, as well as a smaller, but deeper, sample using GALEX, SDSS and UKIDSS. In both cases, a large number of composite subdwarf plus main-sequence star candidates were found. We fit their spectral energy distributions with a composite model in order to estimate the subdwarf and companion star effective temperatures along with the distance to each system. The distribution of subdwarf effective temperature was found to primarily lie in the 20,000 - 30,000 K regime, but we also find cooler subdwarf candidates, making up ~5-10 per cent. The most prevalent companion spectral types were seen to be main-sequence stars between F0 and K0, while subdwarfs with M-type companions appear much rarer. This is clear observational confirmation that a very efficient first stable Roche-lobe overflow channel appears to produce a large number of subdwarfs with F to K-type companions. Our samples thus support the importance of binary evolution for subdwarf formation.
    Monthly Notices of the Royal Astronomical Society 05/2012; 425(2). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present HST ultraviolet spectroscopy of the white dwarfs PG0843+516, PG1015+161, SDSS1228+1040, and GALEX1931+0117, which accrete circumstellar planetary debris formed from the destruction of asteroids. Combined with optical data, a minimum of five and a maximum of eleven different metals are detected in their photospheres. With metal sinking time scales of only a few days, these stars are in accretion/diffusion equilibrium, and the photospheric abundances closely reflect those of the circumstellar material. We find C/Si ratios that are consistent with that of the bulk Earth, corroborating the rocky nature of the debris. Their C/O values are also very similar to those of bulk Earth, implying that the planetary debris is dominated by Mg and Fe silicates. The abundances found for the debris at the four white dwarfs show substantial diversity, comparable at least to that seen across different meteorite classes in the solar system. PG0843+516 exhibits significant over-abundances of Fe and Ni, as well as of S and Cr, which suggests the accretion of material that has undergone melting, and possibly differentiation. PG1015+161 stands out by having the lowest Si abundance relative to all other detected elements. The Al/Ca ratio of the planetary debris around different white dwarfs is remarkably similar. This is analogous to the nearly constant abundance ratio of these two refractory lithophile elements found among most bodies in the solar system. Based on the detection of all major elements of the circumstellar debris, we calculate accretion rates of ~1.7e8g/s ~1.5e9g/s. We detect additional circumstellar absorption in the SiIV 1394,1403 doublet in PG0843+516 and SDSS1228+1040, reminiscent to similar high-ionisation lines seen in white dwarfs in cataclysmic variables. We suspect that these lines originate in hot gas close to the white dwarf, well within the sublimation radius.
    Monthly Notices of the Royal Astronomical Society 05/2012; 424(1). · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a light-curve analysis and radial velocity study of KOI-74, an eclipsing A star + white dwarf binary with a 5.2-d orbit. Aside from new spectroscopy covering the orbit of the system, we used 212 d of publicly available Kepler observations and present the first complete light-curve fitting to these data, modelling the eclipses and transits, ellipsoidal modulation, reflection and Doppler beaming. Markov chain Monte Carlo simulations are used to determine the system parameters and uncertainty estimates. Our results are in agreement with earlier studies, except that we find an inclination of 87°.0 ± 0°.4, which is significantly lower than the previously published value. The altered inclination leads to different values for the relative radii of the two stars and therefore also the mass ratio deduced from the ellipsoidal modulations seen in this system. We find that the mass ratio derived from the radial velocity amplitude (q= 0.104 ± 0.004) disagrees with that derived from the ellipsoidal modulation (q= 0.052 ± 0.004 assuming corotation). This was found before, but with our smaller inclination, the discrepancy is even larger than previously reported. Accounting for the rapid rotation of the A-star, instead of assuming corotation with the binary orbit, is found to increase the discrepancy even further by lowering the mass ratio to q= 0.047 ± 0.004. These results indicate that one has to be extremely careful in using the amplitude of an ellipsoidal modulation signal in a close binary to determine the mass ratio, when a proof of corotation is not firmly established. The same problem could arise whenever an ellipsoidal modulation amplitude is used to derive the mass of a planet orbiting a host star that is not in corotation with the planet's orbit. The radial velocities that can be inferred from the detected Doppler beaming in the light curve are found to be in agreement with our spectroscopic radial velocity determination. We also report the first measurement of Rømer delay in a light curve of a compact binary. This delay amounts to -56 ± 17 s and is consistent with the mass ratio derived from the radial velocity amplitude. The firm establishment of this mass ratio at q= 0.104 ± 0.004 leaves little doubt that the companion of KOI-74 is a low-mass white dwarf.
    Monthly Notices of the Royal Astronomical Society 05/2012; 422:2600-2608. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The orbital period is one of the most accessible observables of a cataclysmic variable. It has been a concern for many years that the orbital period distribution of the known systems does not match that predicted by evolutionary theory. The sample of objects discovered by the Sloan Digital Sky Survey has changed this: it shows the long-expected predominance of short-period objects termed the `period spike'. The minimum period remains in conflict with theory, suggesting that the angular momentum loss mechanisms are stronger than predicted.
    Proceedings of the International Astronomical Union 04/2012; 7(S282):123-124.

Publication Stats

178 Citations
164.93 Total Impact Points

Institutions

  • 2010–2013
    • The University of Warwick
      • Department of Physics
      Coventry, England, United Kingdom
  • 2011
    • Universidad Andrés Bello
      CiudadSantiago, Santiago, Chile
  • 2008–2011
    • University of Southampton
      • • Physics and Astronomy
      • • Department of Physics and Astronomy
      Southampton, ENG, United Kingdom