S. Desidera

The Astronomical Observatory of Brera, Merate, Lombardy, Italy

Are you S. Desidera?

Claim your profile

Publications (223)326.23 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on novel observations of HAT-P-1 aimed at constraining the optical transmission spectrum of the atmosphere of its transiting Hot-Jupiter exoplanet. Ground-based differential spectrophotometry was performed over two transit windows using the DOLORES spectrograph at the Telescopio Nazionale Galileo (TNG). Our measurements imply an average planet to star radius ratio equal to $\rm R_p/R_{\star}$=(0.1159$\pm$0.0005). This result is consistent with the value obtained from recent near infrared measurements of this object but differs from previously reported optical measurements being lower by around 4.4 exoplanet scale heights. Analyzing the data over 5 different spectral bins 600\AA$\,$ wide we observed a single peaked spectrum (3.7 $\rm\sigma$ level) with a blue cut-off corresponding to the blue edge of the broad absorption wing of sodium and an increased absorption in the region in between 6180-7400\AA. We also infer that the width of the broad absorption wings due to alkali metals is likely narrower than the one implied by solar abundance clear atmospheric models. We interpret the result as evidence that HAT-P-1b has a partially clear atmosphere at optical wavelengths with a more modest contribution from an optical absorber than previously reported.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aims. For more than 1.5 years we monitored spectroscopically the star KELT-6 (BD+312447), known to host the transiting hot Saturn KELT-6b, because a previously observed long-term trend in radial velocity time series suggested the existence of an outer companion. Methods. We collected a total of 93 new spectra with the HARPS-N and TRES spectrographs. A spectroscopic transit of KELT-6b was observed with HARPS-N, and simultaneous photometry was obtained with the IAC-80 telescope. Results. We proved the existence of an outer planet with a mininum mass M$_{\rm p}$sini=3.71$\pm$0.21 M$_{\rm Jup}$ and a moderately eccentric orbit ($e=0.21_{-0.036}^{+0.039}$) of period P$\sim$3.5 years. We improved the orbital solution of KELT-6b and obtained the first measurement of the Rossiter-McLaughlin effect, showing that the planet has a likely circular, prograde, and slightly misaligned orbit, with a projected spin-orbit angle $\lambda$=$-$36$\pm$11 degrees. We improved the KELT-6b transit ephemeris from photometry, and we provided new measurements of the stellar parameters. KELT-6 appears as an interesting case to study the formation and evolution of multi-planet systems.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The power of micro-arcsecond ($\mu$as) astrometry is about to be unleashed. ESA's Gaia mission, now headed towards the end of the first year of routine science operations, will soon fulfil its promise for revolutionary science in countless aspects of Galactic astronomy and astrophysics. The potential of Gaia position measurements for important contributions to the astrophysics of planetary systems is huge. We focus here on the expectations for detection and improved characterization of 'young' planetary systems in the neighborhood of the Sun using a combination of Gaia $\mu$as astrometry and direct imaging techniques.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Binary stars hosting exoplanets are a unique laboratory where chemical tagging can be performed to measure with high accuracy the elemental abundances of both stellar components, with the aim to investigate the formation of planets and their subsequent evolution. Here, we present a high-precision differential abundance analysis of the XO-2 wide stellar binary based on high resolution HARPS-N@TNG spectra. Both components are very similar K-dwarfs and host planets. Since they formed presumably within the same molecular cloud, we expect they should possess the same initial elemental abundances. We investigate if the presence of planets can cause some chemical imprints in the stellar atmospheric abundances. We measure abundances of 25 elements for both stars with a range of condensation temperature $T_{\rm C}=40-1741$ K, achieving typical precisions of $\sim 0.07$ dex. The North component shows abundances in all elements higher by $+0.067 \pm 0.032$ dex on average, with a mean difference of +0.078 dex for elements with $T_{\rm C} > 800$ K. The significance of the XO-2N abundance difference relative to XO-2S is at the $2\sigma$ level for almost all elements. We discuss the possibility that this result could be interpreted as the signature of the ingestion of material by XO-2N or depletion in XO-2S due to locking of heavy elements by the planetary companions. We estimate a mass of several tens of $M_{\oplus}$ in heavy elements. The difference in abundances between XO-2N and XO-2S shows a positive correlation with the condensation temperatures of the elements, with a slope of $(4.7 \pm 0.9) \times 10^{-5}$ dex K$^{-1}$, which could mean that both components have not formed terrestrial planets, but that first experienced the accretion of rocky core interior to the subsequent giant planets.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims. We observed the $\tau$ Boo system with the HARPS-N spectrograph to test a new observational strategy aimed at jointly studying asteroseismology, the planetary orbit, and star-planet magnetic interaction. Methods. We collected high-cadence observations on 11 nearly consecutive nights and for each night averaged the raw FITS files using a dedicated software. In this way we obtained spectra with a high signal-to-noise ratio, used to study the variation of the CaII H&K lines and to have radial velocity values free from stellar oscillations, without losing the oscillations information. We developed a dedicated software to build a new custom mask that we used to refine the radial velocity determination with the HARPS-N pipeline and perform the spectroscopic analysis. Results. We updated the planetary ephemeris and showed the acceleration caused by the stellar binary companion. Our results on the stellar activity variation suggest the presence of a high-latitude plage during the time span of our observations. The correlation between the chromospheric activity and the planetary orbital phase remains unclear. Solar-like oscillations are detected in the radial velocity time series: we estimated asteroseismic quantities and found that they agree well with theoretical predictions. Our stellar model yields an age of $0.9\pm0.5$ Gyr for $\tau$ Boo and further constrains the value of the stellar mass to $1.38\pm0.05$ M$_\odot$.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (Abridged) Low-mass stars have been recognised as promising targets in the search for rocky, small planets with the potential of supporting life. Doppler search programmes using high-resolution spectrographs like HARPS or HARPS-N are providing huge quantities of optical spectra of M dwarfs. We aim to calibrate empirical relationships to determine stellar parameters for early M dwarfs (spectral types M0-M4.5) using the same spectra that are used for the radial velocity determinations. Our methodology consists in the use of ratios of pseudo equivalent widths of spectral features as a temperature diagnostic. Stars with effective temperatures obtained from interferometric estimates of their radii are used as calibrators. Empirical calibrations for the spectral type are also provided. Combinations of features and ratios of features are used to derive calibrations for the stellar metallicity. Our methods are then applied to a large sample of M dwarfs that are being observed in the framework of the HARPS search for extrasolar planets.The derived temperatures and metallicities are used together with photometric estimates of mass, radius, and surface gravity to calibrate empirical relationships for these parameters. A total of 112 temperature sensitive ratios have been calibrated over the range 3100-3950 K, providing Teff values with typical uncertainties of the order of 70 K. Eighty-two ratios of pseudo equivalent widths of features were calibrated to derive spectral types. Regarding stellar metallicity, 696 combinations of pseudo equivalent widths of individual features and temperature-sensitive ratios have been calibrated, over the metallicity range from -0.54 to +0.24 dex, with estimated uncertainties in the range of 0.07-0.10 dex. We provide our own empirical calibrations for stellar mass, radius, and surface gravity.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the performance of the Integral Field Spectrograph (IFS) of SPHERE, the high-contrast imager for the ESO VLT telescope designed to perform imaging and spectroscopy of extrasolar planets, obtained from tests performed at the Institute de Plan\'etologie et d'Astrophysique de Grenoble facility during the integration phase of the instrument.} {The tests were performed using the instrument software purposely prepared for SPHERE. The output data were reduced applying the SPHERE data reduction and handling software, adding an improved spectral deconvolution procedure. To this aim, we prepared an alternative procedure for the spectral subtraction exploiting the principal components analysis algorithm. Moreover, a simulated angular differential imaging procedure was also implemented to estimate how the instrument performed once this procedure was applied at telescope. The capability of the IFS to faithfully retrieve the spectra of the detected faint companions was also considered.} {We found that the application of the updated version of the spectral deconvolution procedure alone, when the algorithm throughput is properly taken into account, gives us a $5\sigma$ limiting contrast of the order of 5$\times$$10^{-6}$ or slightly better. The further application of the angular differential imaging procedure on these data should allow us to improve the contrast by one order of magnitude down to around 7$\times$$10^{-7}$ at a separation of 0.3 arcsec. The application of a principal components analysis procedure that simultaneously uses spectral and angular data gives comparable results. Finally, we found that the reproducibility of the spectra of the detected faint companions is greatly improved when angular differential imaging is applied in addition to the spectral deconvolution.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We determine the true and the projected obliquity of HAT-P-36 and WASP-11/HAT-P-10 systems, respectively, which are both composed of a relatively cool star and a hot-Jupiter planet. Thanks to the high-resolution spectrograph HARPS-N, we observed the Rossiter-McLaughlin effect for both the systems by acquiring precise radial-velocity measurements during planetary transit events. We also present photometric observations comprising six light curves covering five transit events, obtained using three medium-class telescopes and the telescope-defocussing technique. One transit of WASP-11/HAT-P-10 was followed contemporaneously from two observatories. The three transit light curves of HAT-P-36b show anomalies attributable to starspot complexes on the surface of the parent star, in agreement with the analysis of its spectra that indicate a moderate activity. By analysing the complete HATNet data set of HAT-P-36, we estimated the stellar rotation period by detecting a periodic photometric modulation in the light curve caused by star spots, obtaining Prot=15.3 days, which implies that the inclination of the stellar rotational axis with respect to the line of sight is 65 degree. We used the new spectroscopic and photometric data to revise the main physical parameters and measure the sky-projected misalignment angle of the two systems. We found \lambda=-14 degree for HAT-P-36 and \lambda=7 degree for WASP-11/HAT-P-10, indicating in both cases a good spin-orbit alignment. In the case of HAT-P-36, we also measured its real obliquity, which resulted to be 25 degrees.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We revisit the TrES-4 system parameters based on high-precision HARPS-N radial-velocity measurements and new photometric light curves. A combined spectroscopic and photometric analysis allows us to determine a spectroscopic orbit with an amplitude $K=51\pm3$ m s$^{-1}$. The derived mass of TrES-4b is found to be $M_{\rm p} = 0.49\pm0.04 \rm M_{Jup}$, significantly lower than previously reported. Combined with the large radius ($R_{\rm p} = 1.84_{-0.09}^{+0.08} \rm R_{Jup}$) inferred from our analysis, TrES-4b becomes the second-lowest density transiting hot Jupiter known. We discuss several scenarios to explain the puzzling discrepancy in the mass of TrES-4b in the context of the exotic class of highly inflated transiting giant planets.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: XO-2 is the first confirmed wide stellar binary system where the almost twin components XO-2N and XO-2S have planets. This stimulated a detailed characterization study of the stellar and planetary components based on new observations. We collected high-resolution spectra with the HARPS-N spectrograph and multi-band light curves. Spectral analysis led to an accurate determination of the stellar atmospheric parameters and characterization of the stellar activity. We collected 14 transit light curves of XO-2Nb used to improve the transit parameters. Photometry provided accurate magnitude differences between the stars and a measure of their rotation periods. The iron abundance of XO-2N was found to be +0.054 dex greater, within more than 3-sigma, than that of XO-2S. We confirm a long-term variation in the radial velocities of XO-2N, and we detected a turn-over with respect to previous measurements. We suggest the presence of a second massive companion in an outer orbit or the stellar activity cycle as possible causes of the observed acceleration. The latter explanation seems more plausible with the present dataset. We obtained an accurate value of the projected spin-orbit angle for the XO-2N system (lambda=7+/-11 degrees), and estimated the real 3-D spin-orbit angle (psi=27 +12/-27 degrees). We measured the XO-2 rotation periods, and found a value of P=41.6 days in the case of XO-2N, in excellent agreement with the predictions. The period of XO-2S appears shorter, with an ambiguity between 26 and 34.5 days that we cannot solve with the present dataset alone. XO-2N appears to be more active than the companion, and this could be due to the fact that we sampled different phases of their activity cycle, or to an interaction between XO-2N and its hot Jupiter that we could not confirm.
  • Astronomy and Astrophysics 01/2015; DOI:10.1051/0004-6361/201425332 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. Astrometric monitoring of directly-imaged exoplanets allows the study of their orbital parameters and system architectures. Because most directly-imaged planets have long orbital periods (>20 AU), accurate astrometry is challenging when based on data acquired on timescales of a few years and usually with different instruments. The LMIRCam camera on the LBT is being used for the LEECH survey to search for and characterize young and adolescent exoplanets in L' band, including their system architectures. Aims. We first aim to provide a good astrometric calibration of LMIRCam. Then, we derive new astrometry, test the predictions of the orbital model of 8:4:2:1 mean motion resonance proposed by Go\'zdziewski & Migaszewski, and perform new orbital fitting of the HR 8799 bcde planets. We also present deep limits on a putative fifth planet interior to the known planets. Methods. We use observations of HR 8799 and the Theta1 Ori C field obtained during the same run in October 2013. Results. We first characterize the distortion of LMIRCam. We determine a platescale and a true north orientation for the images of 10.707 +/- 0.012 mas/pix and -0.430 +/- 0.076 deg, respectively. The errors on the platescale and true north orientation translate into astrometric accuracies at a separation of 1 of 1.1 mas and 1.3 mas, respectively. The measurements for all planets are usually in agreement within 3 sigma with the ephemeris predicted by Go\'zdziewski & Migaszewski. The orbital fitting based on the new astrometric measurements favors an architecture for the planetary system based on 8:4:2:1 mean motion resonance. The detection limits allow us to exclude a fifth planet slightly brighter/more massive than HR 8799 b at the location of the 2:1 resonance with HR 8799 e (~9.5 AU) and about twice as bright as HR 8799 cde at the location of the 3:1 resonance with HR 8799 e (~7.5 AU).
    Astronomy and Astrophysics 12/2014; 579. DOI:10.1051/0004-6361/201425185 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The new planet finder for the Very Large Telescope (VLT), the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE), just had its first light in Paranal. A dedicated instrument for the direct detection of planets, SPHERE, is composed of a polametric camera in visible light, the Zurich IMager POLarimeter (ZIMPOL), and two near-infrared sub-systems: the Infra-Red Dual-beam Imager and Spectrograph (IRDIS), a multi-purpose camera for imaging, polarimetry, and long-slit spectroscopy, and the integral field spectrograph (IFS), an integral field spectrograph. We present the results obtained from the analysis of data taken during the laboratory integration and validation phase, after the injection of synthetic planets. Since no continuous field rotation could be performed in the laboratory, this analysis presents results obtained using reduction techniques that do not use the angular differential imaging (ADI) technique. To perform the simulations, we used the instrumental point spread function (PSF) and model spectra of L and T-type objects scaled in contrast with respect to the host star. We evaluated the expected error in astrometry and photometry as a function of the signal to noise of companions, after spectral differential imaging (SDI) reduction for IRDIS and spectral deconvolution (SD) or principal component analysis (PCA) data reductions for IFS. We deduced from our analysis, for example, that $\beta$Picb, a 12~Myr old planet of $\sim$10~\MJ and semi-major axis of 9--10 AU, would be detected with IRDIS with a photometric error of 0.16~mag and with a relative astrometric position error of 1.1~mas. With IFS, we could retrieve a spectrum with error bars of about 0.15~mag on each channel and astrometric relative position error of 0.6~mas. For a fainter object such as HR8799d, a 13~\MJ planet at a distance of 27~AU, IRDIS could obtain a relative astrometric error of 3~mas.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Direct imaging surveys for exoplanets commonly exclude binary stars from their target lists, leaving a large part of the overall planet demography unexplored. To address this gap in our understanding of planet formation and evolution, we have launched the first direct imaging survey dedicated to circumbinary planets: SPOTS, the Search for Planets Orbiting Two Stars. In this paper, we discuss the theoretical context, scientific merit, and technical feasibility of such observations, describe the target sample and observational strategy of our survey, and report on the first results from our pilot survey of 26 targets with the VLT NaCo facility. While we have not found any confirmed substellar companions to date, a number of promising candidate companions remain to be tested for common proper motion in upcoming follow-up observations. We also report on the astrometry of the three resolved binaries in our target sample. This pilot survey constitutes a successful proof of concept for our survey strategy and paves the way for a second stage of exploratory observations with VLT SPHERE.
  • Source
    J. Sanz-Forcada · S. Desidera · G. Micela
    [Show abstract] [Hide abstract]
    ABSTRACT: Several circumbinary planets have recently been discovered. The orbit of a planet around a binary stellar system poses several dynamic constraints. The effects that radiation from the host stars may have on the planet atmospheres must be considered. Because of the configuration of a close binary system, these stars have a high rotation rate, which causes a permanent state of high stellar activity and copious XUV radiation. The accumulated effects are stronger than for exoplanets around single stars, and cause a faster evaporation of their atmospheres. We evaluate the effects that stellar radiation has on the evaporation of exoplanets around binary systems and on the survival of these planets. We considered the XUV spectral range to account for the photons that are easily absorbed by a planet atmosphere that is mainly composed of hydrogen. A more complex atmospheric composition is expected to absorb this radiation more efficiently. We used direct X-ray observations to evaluate the energy in the X-rays range and coronal models to calculate the (nondetectable) EUV part of the spectrum. The simulations show that exoplanets in a close orbit will suffer strong photoevaporation that may cause a total loss of atmosphere in a short time. A binary system of two solar-like stars will be highly efficient in evaporating the atmosphere of the planet. These systems will be difficult to find, even if they are dynamically stable. Still, planets may orbit around binary systems of low mass stars for wider orbits. Currently known circumbinary planets are not substantially affected by thermal photoevaporation processes, unless Kepler-47 b has an inflated atmosphere. The distribution of the orbital periods of circumbinary planets is shifted to much longer periods than the average of Kepler planets, which supports a scenario of strong photoevaporation in close-in circumbinary planets.
    Astronomy and Astrophysics 09/2014; 570. DOI:10.1051/0004-6361/201323231 · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SPHERE is an instrument aimed to the search for low mass companions around young stars in the solar neighborhood. To achieve this goal light from the host star (and in particular the speckle pattern due to the telescope aberrations) should be strongly attenuated while avoiding to cancel out the light from the faint companion. Different techniques can be used to fulfill this aim exploiting the multi-wavelength datacube produced by the Integral Field Spectrograph that is one of the scientific modules that composes SPHERE. In particular we have tested the application of the Spectral Deconvolution and of the Principal Components Analysis techniques. Both of them allow us to obtained a contrast better than 10−5 with respect to the central star at separations of the order of 0.4 arcsec. A further improvement of one order of magnitude can be obtained by combining one of these techniques to the Angular Differential Imaging. To investigate the expected performance of IFS in characterizing detected objects we injected in laboratory data synthetics planets with different intrinsic fluxes and projected separations from the host star. We performed a complete astrometric and photometric analysis of these images to evaluate the expected errors on these measurements, the spectral fidelity and the differences between the reduction methods. The main issue is to avoid the strong self-cancellation that is inherent to all the reduction methods. We have in particular tested two possible solutions: the use of a mask during the reduction on the positions of the companions or, alternatively, using a KLIP procedure for the IFS. This latter seems to give better results in respect o the classical PCA, allowing us to obtain a good spectral reconstruction for simulated objects down to a contrast of ~10-5.
    SPIE Astronomical Telescopes + Instrumentation; 08/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Spring 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its $\sim$130-night campaign from the Large Binocular Telescope (LBT) atop Mt Graham, Arizona. This survey benefits from the many technological achievements of the LBT, including two 8.4-meter mirrors on a single fixed mount, dual adaptive secondary mirrors for high Strehl performance, and a cold beam combiner to dramatically reduce the telescope's overall background emissivity. LEECH neatly complements other high-contrast planet imaging efforts by observing stars at L' (3.8 $\mu$m), as opposed to the shorter wavelength near-infrared bands (1-2.4 $\mu$m) of other surveys. This portion of the spectrum offers deep mass sensitivity, especially around nearby adolescent ($\sim$0.1-1 Gyr) stars. LEECH's contrast is competitive with other extreme adaptive optics systems, while providing an alternative survey strategy. Additionally, LEECH is characterizing known exoplanetary systems with observations from 3-5$\mu$m in preparation for JWST.
  • Conference Paper: The SPHERE IFS at work
    [Show abstract] [Hide abstract]
    ABSTRACT: SPHERE is an extrasolar planet imager whose goal is to detect giant extrasolar planets in the vicinity of bright stars and to characterize them through spectroscopic and polarimetric observations. It is a complete system with a core made of an extreme-Adaptive Optics (AO) turbulence correction, a pupil tracker and NIR and Visible coronagraph devices. At its back end, a differential dual imaging camera and an integral field spectrograph (IFS) work in the Near Infrared (NIR) (0.95 ≤λ≤2.32 μm) and a high resolution polarization camera covers the visible (0.6 ≤λ≤0.9 μm). The IFS is a low resolution spectrograph (R~50) operates in the near IR (0.95≤λ≤1.6 μm), an ideal wavelength range for the detection of planetary features, over a field of view of about 1.7 x 1.7 square arcsecs. Form spectra it is possible to reconstruct monochromatic images with high contrast (10-7) and high spatial resolution, well inside the star PSF. In this paper we describe the IFS, its calibration and the results of several performance which IFS underwent. Furthermore, using the IFS characteristics we give a forecast on the planetary detection rate.
    SPIE Astronomical Telescopes + Instrumentation; 07/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We performed an intensive radial velocity monitoring of XO-2S, the wide companion of the transiting planet-host XO-2N, using HARPS-N at TNG in the framework of the GAPS programme. The radial velocity measurements indicate the presence of a new planetary system formed by a planet that is slightly more massive than Jupiter at 0.48 au and a Saturn-mass planet at 0.13 au. Both planetary orbits are moderately eccentric and were found to be dynamically stable. There are also indications of a long-term trend in the radial velocities. This is the first confirmed case of a wide binary whose components both host planets, one of which is transiting, which makes the XO-2 system a unique laboratory for understanding the diversity of planetary systems.
    Astronomy and Astrophysics 07/2014; 567. DOI:10.1051/0004-6361/201424339 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Even though only a handful of sub-stellar companions have been found via direct imaging, each of these discoveries has had a tremendous impact on our understanding of the star formation process and the physics of cool atmospheres. Young stars are prime targets for direct imaging searches for planets and brown dwarfs, due to the favorable brightness contrast expected at such ages and also because it is often possible to derive relatively good age estimates for these primaries. Here we present the direct imaging discovery of HD 284149 b, a 18-50 M_Jup companion at a projected separation of 400 AU from a young (25 Myr) F8 star, with which it shares common proper motion
    The Astrophysical Journal Letters 06/2014; 791(2). DOI:10.1088/2041-8205/791/2/L40 · 5.60 Impact Factor

Publication Stats

2k Citations
326.23 Total Impact Points

Institutions

  • 2001–2015
    • The Astronomical Observatory of Brera
      Merate, Lombardy, Italy
  • 2004–2012
    • National Institute of Astrophysics
      Roma, Latium, Italy
    • University of Texas at Austin
      Austin, Texas, United States
  • 2007
    • University of Bologna
      Bolonia, Emilia-Romagna, Italy
  • 1998–2007
    • University of Padova
      • Department of Physics and Astronomy "Galileo Galilei"
      Padua, Veneto, Italy
  • 2006
    • University of Santiago, Chile
      CiudadSantiago, Santiago Metropolitan, Chile
  • 1999
    • Universidade Federal do Rio Grande do Sul
      • Departamento de Astronomia
      Porto Alegre, Estado do Rio Grande do Sul, Brazil