Are you Chunjun Li?

Claim your profile

Publications (2)5.3 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Bread wheat (Triticum aestivum L.) is a hexaploid species with a large and complex genome. A reference genetic marker map, namely the International Triticeae Mapping Initiative (ITMI) map, has been constructed with the recombinant inbred line population derived from a cross involving a synthetic line. But it is not sufficient for a full understanding of the wheat genome under artificial selection without comparing it with intervarietal maps. Using an intervarietal mapping population derived by crossing Nanda2419 and Wangshuibai, we constructed a high-density genetic map of wheat. The total map length was 4,223.1 cM, comprising 887 loci, 345 of which were detected by markers derived from expressed sequence tags (ESTs). Two-thirds of the high marker density blocks were present in interstitial and telomeric regions. The map covered, mostly with the EST-derived markers, approximately 158 cM of telomeric regions absent in the ITMI map. The regions of low marker density were largely conserved among cultivars and between homoeologous subgenomes. The loci showing skewed segregation displayed a clustered distribution along chromosomes and some of the segregation distortion regions (SDR) are conserved in different mapping populations. This map enriched with EST-derived markers is important for structure and function analysis of wheat genome as well as in wheat gene mapping, cloning, and breeding programs.
    Theoretical and Applied Genetics 08/2008; 117(2):181-9. · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fusarium head blight (FHB), or scab, is a devastating wheat disease worldwide, reducing both grain yield and quality. The percentage of Fusarium-damaged kernels (FDK) directly reflects the damage level caused by scab on wheat grains and its variation represents the so-called type IV scab resistance in germplasm. To identify genes governing type IV resistance and investigate its relationship with other scab resistance types, we mapped QTLs associated with percent FDK using data from three different field evaluations of the recombination inbred line (RIL) population derived from the susceptible cultivar Nanda 2419×the scab-resistant cultivar Wangshuibai. Five QTLs related to percent FDK were identified in at least two different trials, for which Wangshuibai contributed four of the resistance alleles. Most of the FDK-related QTLs, including the three with larger effects, QFdk.nau-2B, QFdk.nau-3B and QFdk.nau-4B, mapped to intervals associated with either type IV resistance or type II resistance. Moreover, most of the major type I and type II resistance QTLs detected previously were associated with type IV resistance, suggesting that resistance to initial infection and disease spread play major roles in conditioning less FDK. Therefore, breeders have options to choose inoculation methods based on their expertise and resources without risking significant loss of information when using percent FDK as the disease index. The most useful scab resistance QTLs for breeding would be those with stable influences on FDK and/or deoxynivalenol (DON) accumulation besides the initial infection and disease spread.
    Euphytica 163(2):185-191. · 1.64 Impact Factor