Xueshi Hao

Genomics Institute of the Novartis Research Foundation, San Diego, California, United States

Are you Xueshi Hao?

Claim your profile

Publications (6)43.17 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Sticky residue: Pyrroline-carboxy-lysine (Pcl) can be readily incorporated into proteins expressed in E. coli and mammalian cells by using the pyrrolysyl tRNA/tRNA synthetase pair. Pcl can be used as a single amino acid purification tag and can be site-specifically modified with functional probes during the elution process.
    ChemBioChem 02/2012; 13(3):364-6. DOI:10.1002/cbic.201100684 · 3.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pyrroline-carboxy-lysine (Pcl) is a demethylated form of pyrrolysine that is generated by the pyrrolysine biosynthetic enzymes when the growth media is supplemented with D-ornithine. Pcl is readily incorporated by the unmodified pyrrolysyl-tRNA/tRNA synthetase pair into proteins expressed in Escherichia coli and in mammalian cells. Here, we describe a broadly applicable conjugation chemistry that is specific for Pcl and orthogonal to all other reactive groups on proteins. The reaction of Pcl with 2-amino-benzaldehyde or 2-amino-acetophenone reagents proceeds to near completion at neutral pH with high efficiency. We illustrate the versatility of the chemistry by conjugating Pcl proteins with poly(ethylene glycol)s, peptides, oligosaccharides, oligonucleotides, fluorescence, and biotin labels and other small molecules. Because Pcl is genetically encoded by TAG codons, this conjugation chemistry enables enhancements of the pharmacology and functionality of proteins through site-specific conjugation.
    Proceedings of the National Academy of Sciences 06/2011; 108(26):10437-42. DOI:10.1073/pnas.1105197108 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: D-ornithine has previously been suggested to enhance the expression of pyrrolysine-containing proteins. We unexpectedly discovered that uptake of D-ornithine results in the insertion of a new amino acid, pyrroline-carboxy-lysine (Pcl) instead of the anticipated pyrrolysine (Pyl). Our feeding and biochemical studies point to specific roles of the poorly understood Pyl biosynthetic enzymes PylC and PylD in converting L-lysine and D-ornithine to Pcl and confirm intermediates in the biosynthesis of Pyl.
    Nature Chemical Biology 04/2011; 7(8):528-30. DOI:10.1038/nchembio.586 · 13.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel series of benzoazepin-2-ones were designed and synthesized targeting the PIF pocket of AGC protein kinases, among which a series of thioether-linked benzoazepin-2-ones were discovered to bind to the PIF pocket of 3-phosphoinositide-dependent kinase-1 (PDK1), and to displace the PIF peptide with an EC(50) values in the lower micromolar range. The structure-activity relationships (SARs) of the linker region, tail region, and distal region were explored to further optimize these novel binders which target the PIF pocket of PDK1. When tested in an in vitro PDK1 enzymatic assay using a peptide substrate, the benzodiazepin-2-ones increased the activity of the enzyme in a concentration-dependent fashion, indicating these compounds act as PDK1 allosteric activators. These new compounds may be further developed as therapeutic agents for the treatment of diseases where the PDK1-mediated AGC protein kinases are dysregulated.
    Bioorganic & medicinal chemistry letters 07/2010; 20(13):3897-902. DOI:10.1016/j.bmcl.2010.05.019 · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A large number of amino acids other than the canonical amino acids can now be easily incorporated in vivo into proteins at genetically encoded positions. The technology requires an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is added to the media while a TAG amber or frame shift codon specifies the incorporation site in the protein to be studied. These unnatural amino acids can be isotopically labeled and provide unique opportunities for site-specific labeling of proteins for NMR studies. In this perspective, we discuss these opportunities including new photocaged unnatural amino acids, outline usage of metal chelating and spin-labeled unnatural amino acids and expand the approach to in-cell NMR experiments.
    Journal of Biomolecular NMR 09/2009; 46(1):89-100. DOI:10.1007/s10858-009-9365-4 · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In vivo incorporation of isotopically labeled unnatural amino acids into large proteins drastically reduces the complexity of nuclear magnetic resonance (NMR) spectra. Incorporation is accomplished by coexpressing an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid added to the media and the protein of interest with a TAG amber codon at the desired incorporation site. To demonstrate the utility of this approach for NMR studies, 2-amino-3-(4-(trifluoromethoxy)phenyl)propanoic acid (OCF 3Phe), (13)C/(15)N-labeled p-methoxyphenylalanine (OMePhe), and (15)N-labeled o-nitrobenzyl-tyrosine (oNBTyr) were incorporated individually into 11 positions around the active site of the 33 kDa thioesterase domain of human fatty acid synthase (FAS-TE). In the process, a novel tRNA synthetase was evolved for OCF 3Phe. Incorporation efficiencies and FAS-TE yields were improved by including an inducible copy of the respective aminoacyl-tRNA synthetase gene on each incorporation plasmid. Using only between 8 and 25 mg of unnatural amino acid, typically 2 mg of FAS-TE, sufficient for one 0.1 mM NMR sample, were produced from 50 mL of Escherichia coli culture grown in rich media. Singly labeled protein samples were then used to study the binding of a tool compound. Chemical shift changes in (1)H-(15)N HSQC, (1)H-(13)C HSQC, and (19)F NMR spectra of the different single site mutants consistently identified the binding site and the effect of ligand binding on conformational exchange of some of the residues. OMePhe or OCF 3Phe mutants of an active site tyrosine inhibited binding; incorporating (15)N-Tyr at this site through UV-cleavage of the nitrobenzyl-photocage from oNBTyr re-established binding. These data suggest not only robust methods for using unnatural amino acids to study large proteins by NMR but also establish a new avenue for the site-specific labeling of proteins at individual residues without altering the protein sequence, a feat that can currently not be accomplished with any other method.
    Journal of the American Chemical Society 08/2008; 130(29):9268-81. DOI:10.1021/ja801602q · 11.44 Impact Factor