Are you Zhihao Zou?

Claim your profile

Publications (2)4.76 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study is to determine the efficacy of injecting adult bone marrow derived stem cells (BMSCs) transfected with a pEGFP-C2 plasmid containing the gene for Tyrosine Hydroxylase (TH) into the lateral ventricle for treating rats with Parkinson's Disease (PD) induced by injections into the Substantia Nigra pars compacta (SNc) with 6-hydroxydopamine (6-OHDA), a potent and selective neurotoxin for catecholamine expressing neurons. BMSCs were obtained from the femur of rats; transfected with plasmid constructed with TH and green fluorescent protein (GFP) (with about 85% co-transfection efficiency rate) and then cultured with neuronal differentiation media. Eighty rats were injected into the SNc with 6-OHDA and tested behaviorally to verify the model was induced. Then, 12 PD rats were injected into the anterior horn of the lateral ventricle with x10(5) cells, while 12 more rats were given saline as control. We found that 10 days after transplantation there was a significant (P<0.01) reduction in Apomorphine induced rotations in rats receiving transplanted cells. Also, combined SNc and Striatal dopamine contents (microg/g wet tissue weight) in transplanted rats were greater than controls (0.19+/-0.06 vs 0.63+/-0.14 P<0.01). Immunohistological examination found GFP expression, indicating the presence of transplanted cells within the brain, some of which had migrated through the nerve fibers along the ventricular wall. We feel this study shows the efficacy of genetically engineered BMSCs in the treatment of a rat model of PD. However, future experiments are needed to determine the mechanisms.
    Brain research 07/2010; 1346:279-86. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the therapeutic effects of tyrosine hydroxylase (TH)-transfected neuronal stem cells derived from bone marrow stem cells (NdSCs-D-BMSCs) on Parkinson's disease (PD) through different transplantation protocols, including microinjection into the cerebral ventricles (CV) and the striatum (ST). After identification by enzyme digestion, the constructed plasmid pEGFP-C2-TH was transfected into 8-day-cultured NdSCs-D-BMSCs by electroporation resulting in the coexpression of green fluorescent protein (GFP) and TH. The TH-transfected cells were injected into either the right ST or CV of PD rats. The changes in locomotor activity of PD rats and the migration of transplanted cells in cerebral tissue were monitored and cerebral DA levels were assayed by high performance liquid chromatography (HPLC). Five days after plasmid pEGFP-C2-TH transfection into NdSCs-D-BMSCs GFP was expressed in 62.1% of the cells and the rate of co-expression with TH was 83.5%. Ten weeks following transplantation, the symptoms of PD rats in both groups were significantly improved and DA levels were restored to 46.6% and 33% of control. The transferred cells showed excellent survival rates in PD rat brains and distant migration was observed. Both CV and ST transplantation of TH-transfected NDSCs-D-BMSCs has obvious therapeutic effects on PD rats. This study could provide evidence for future transplantation route selection, possibly leading to stem cell transplantation through lumbar puncture.
    Cellular and Molecular Neurobiology 07/2008; 28(4):529-43. · 2.29 Impact Factor