Keiichi I Nakayama

Kyushu University, Hukuoka, Fukuoka, Japan

Are you Keiichi I Nakayama?

Claim your profile

Publications (225)1766.59 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular homeostasis is regulated by signals through multiple molecular networks that include protein phosphorylation and metabolites. However, where and when the signal flows through a network and regulates homeostasis has not been explored. We have developed a reconstruction method for the signal flow based on time-course phosphoproteome and metabolome data, using multiple databases, and have applied it to acute action of insulin, an important hormone for metabolic homeostasis. An insulin signal flows through a network, through signaling pathways that involve 13 protein kinases, 26 phosphorylated metabolic enzymes, and 35 allosteric effectors, resulting in quantitative changes in 44 metabolites. Analysis of the network reveals that insulin induces phosphorylation and activation of liver-type phosphofructokinase 1, thereby controlling a key reaction in glycolysis. We thus provide a versatile method of reconstruction of signal flow through the network using phosphoproteome and metabolome data.
    Cell reports. 08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low-density lipoprotein receptor (LDLR) mRNA is unstable, but is stabilized upon extracellular signal-regulated kinase (ERK) activation, possibly through the binding of certain proteins to the LDLR mRNA 3'-untranslated region (UTR), although the detailed mechanism underlying this stability control is unclear. Here, using a proteomic approach, we show that proteins ZFP36L1 and ZFP36L2 specifically bind to the 3'-UTR of LDLR mRNA and recruit the CCR4-NOT-deadenylase complex, resulting in mRNA destabilization. We also show that the C-terminal regions of ZFP36L1 and ZFP36L2 are directly phosphorylated by p90 ribosomal S6 kinase, a kinase downstream of ERK, resulting in dissociation of the CCR4-NOT-deadenylase complex and stabilization of LDLR mRNA. We further demonstrate that targeted disruption of the interaction between LDLR mRNA and ZFP36L1 and ZFP36L2 using antisense oligonucleotides results in upregulation of LDLR mRNA and protein. These results indicate that ZFP36L1 and ZFP36L2 regulate LDLR protein levels downstream of ERK. Our results also show the usefulness of our method for identifying critical regulators of specific RNAs and the potency of antisense oligonucleotide-based therapeutics.
    Nucleic Acids Research 08/2014; · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sonic hedgehog (Shh) is a secreted morphogen that controls the patterning and growth of various tissues in the developing vertebrate embryo, including the central nervous system. Ablation of the FK506-binding protein 38 (FKBP38) gene results in activation of the Shh signaling pathway in mouse embryos, but the molecular mechanism by which FKBP38 suppresses Shh signaling has remained unclear. With the use of a proteomics approach, we have now identified ANKMY2, a protein with three ankyrin repeats and a MYND (myeloid, Nervy, and DEAF-1)-type Zn(2+)-finger domain, as a molecule that interacts with FKBP38. Co-immunoprecipitation analysis confirmed that endogenous FKBP38 and ANKMY2 interact in mouse brain. Depletion or overexpression of ANKMY2 resulted in down- and up-regulation of Shh signaling, respectively, in mouse embryonic fibroblasts. Furthermore, combined depletion of both FKBP38 and ANKMY2 attenuated Shh signaling in these cells, suggesting that ANKMY2 acts downstream of FKBP38 to activate the Shh signaling pathway. Targeting of the zebrafish ortholog of mouse Ankmy2 (ankmy2a) in fish embryos with an antisense morpholino oligonucleotide conferred a phenotype reflecting loss of function of the Shh pathway, suggesting that the regulation of Shh signaling by ANKMY2 is conserved between mammals and fish. Our findings thus indicate that the FKBP38-ANKMY2 axis plays a key role in regulation of Shh signaling in vivo.
    The Journal of biological chemistry. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: MDM2 mediates the ubiquitylation and thereby triggers the proteasomal degradation of the tumor suppressor protein p53. However, genetic evidence suggests that MDM2 contributes to multiple regulatory networks independent of p53 degradation. We have now identified the DEAD-box RNA helicase DDX24 as a nucleolar protein that interacts with MDM2. DDX24 was found to bind to the central region of MDM2, resulting in the polyubiquitylation of DDX24 both in vitro and in vivo. Unexpectedly, however, the polyubiquitylation of DDX24 did not elicit its proteasomal degradation but rather promoted its association with pre-ribosomal ribonucleoprotein (pre-rRNP) processing complexes that are required for the early steps of pre-rRNA processing. Consistent with these findings, depletion of DDX24 in cells impaired pre-rRNA processing and resulted both in abrogation of MDM2 function and in consequent p53 stabilization. Our results thus suggest an unexpected role of MDM2 in nonproteolytic ubiquitylation of DDX24, which may contribute to the regulation of pre-rRNA processing.
    Molecular and cellular biology. 06/2014;
  • Michiko Shirane-Kitsuji, Keiichi I. Nakayama
    [Show abstract] [Hide abstract]
    ABSTRACT: FK506-binding protein 38 (FKBP38) is a membrane chaperone that is localized predominantly to mitochondria and contains a COOH-terminal tail anchor. FKBP38 also harbors an FKBP domain that confers peptidyl-prolyl cis–trans isomerase activity, but it differs from other FKBP family members in that this activity is dependent on the binding of Ca2+-calmodulin. FKBP38 inhibits apoptosis by recruiting the anti-apoptotic proteins Bcl-2 and Bcl-xL to mitochondria. Mice deficient in FKBP38 die soon after birth manifesting a defect in neural tube closure that results in part from unrestrained apoptosis. We recently found that FKBP38 and Bcl-2 translocate from mitochondria to the endoplasmic reticulum during mitophagy, a form of autophagy responsible for the elimination of damaged mitochondria. FKBP38 and Bcl-2 thus escape the degradative fate of most mitochondrial proteins during mitophagy. This escape of FKBP38 is dependent on the low basicity of its COOH-terminal sequence and is essential for the suppression of apoptosis during mitophagy. FKBP38 thus plays a key role in the regulation of apoptosis under normal and pathological conditions.
    The international journal of biochemistry & cell biology 06/2014; · 4.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spermatogonial stem cells (SSCs) undergo self-renewal divisions to support spermatogenesis throughout life. Although several positive regulators of SSC self-renewal have been discovered, little is known about the negative regulators. Here, we report that F-box and WD-40 domain protein 7 (FBXW7), a component of the Skp1-Cullin-F-box-type ubiquitin ligase, is a negative regulator of SSC self-renewal. FBXW7 is expressed in undifferentiated spermatogonia in a cell cycle-dependent manner. Although peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (PIN1), essential for spermatogenesis, is thought to destroy FBXW7, Pin1 depletion decreased FBXW7 expression. Spermatogonial transplantation showed that Fbxw7 overexpression compromised SSC activity whereas Fbxw7 deficiency enhanced SSC colonization and caused accumulation of undifferentiated spermatogonia, suggesting that the level of FBXW7 is critical for self-renewal and differentiation. Screening of putative FBXW7 targets revealed that Fbxw7 deficiency up-regulated myelocytomatosis oncogene (MYC) and cyclin E1 (CCNE1). Although depletion of Myc/Mycn or Ccne1/Ccne2 compromised SSC activity, overexpression of Myc, but not Ccne1, increased colonization of SSCs. These results suggest that FBXW7 regulates SSC self-renewal in a negative manner by degradation of MYC.
    Proceedings of the National Academy of Sciences 05/2014; · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proper development of T cells depends on lineage-specific regulators controlled transcriptionally and post-translationally to ensure precise levels at appropriate times. Conditional inactivation of F-box protein Fbw7 in mice T-cell development resulted in reduced thymic CD4 single positive (SP), and splenic CD4(+) and CD8(+) subcell proportions. Fbw7 deficiency skewed CD8 SP lineage differentiation, which exhibited a higher incidence of apoptosis. Similar perturbations during development of CD8 positive cells were reported with transgenic mice, which enforced GATA3 (T-cell differentiation regulator) expression throughout T-cell development. We observed augmented GATA3 in CD4/CD8 double negative (DN) stage 4, CD4 SP, and CD8 SP lineages in Fbw7-deficient thymocytes. We demonstrated that Fbw7 bound to, ubiquitylated, and destabilized GATA3 using overexpressed proteins in cultured cells. Two Cdc4 phosphodegron (CPD) candidate sequences, consensus Fbw7 recognition domains, were identified in GATA3 and phosphorylation of Thr-156 in CPD was required for Fbw7-mediated ubiquitylation and degradation. Phosphorylation of Thr-156 GATA3 was detected in mouse thymocytes and CDK2 was identified as a respondent for phosphorylation at Thr-156. These observations suggest Fbw7-mediated GATA3 regulation with CDK2-mediated phosphorylation of CPD contributes to the precise differentiation of T-cell lineages.
    Molecular and Cellular Biology 05/2014; · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: FBXL5 (F-box and leucine-rich repeat protein 5) is the F-box protein subunit of, and therefore responsible for substrate recognition by, the SCF(FBXL5) ubiquitin ligase complex, which targets iron regulatory protein 2 (IRP2) for proteasomal degradation. IRP2 plays a central role in the maintenance of cellular iron homeostasis in mammals through posttranscriptional regulation of proteins that contribute to control of the intracellular iron concentration. The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo, given that mice lacking FBXL5 die during early embryogenesis as a result of unrestrained IRP2 activity and oxidative stress attributable to excessive iron accumulation. Despite its pivotal role in the control of iron homeostasis, however, little is known of the upstream regulation of FBXL5 activity. We now show that FBXL5 undergoes constitutive ubiquitin-dependent degradation at the steady state. With the use of a proteomics approach to the discovery of proteins that regulate the stability of FBXL5, we identified the large HECT-type ubiquitin ligase HERC2 (HECT and RLD domain containing E3 ubiquitin protein ligase 2) as an FBXL5-associated protein. Inhibition of the HERC2-FBXL5 interaction or depletion of endogenous HERC2 by RNA interference resulted in the stabilization of FBXL5 and a consequent increase in its abundance. Such accumulation of FBXL5 in turn led to a decrease in the intracellular content of ferrous iron. Our results thus suggest that HERC2 regulates the basal turnover of FBXL5, and that this ubiquitin-dependent degradation pathway contributes to the control of mammalian iron metabolism.
    Journal of Biological Chemistry 04/2014; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: IL-12, which is produced in response to intracellular bacteria, such as Listeria monocytogenes, promotes the development of pathogen-specific Th1 cells that play an important role in host defense. However, it has also been known that CD44(high) memory-phenotype CD4 T cells with Th1 functions naturally occur in naive mice, and that lymphopenia-induced proliferation of naive CD4 T cells generates memory-phenotype CD4 T cells with Th1 functions, although their differentiation mechanism and contribution to host defense are unclear. In this study, we analyzed the development and the functions of the different subsets of Th1 cells by using mice lacking tyrosine kinase 2 (Tyk2), a member of the Janus kinase family critically involved in IL-12 signaling. In contrast with the case of conventional Ag-specific Th1 cells, the development of naturally occurring Th1 cells was not impaired in Tyk2-deficient mice. In addition, Th1 cells were normally generated from Tyk2-deficient naive CD4 T cells via lymphopenia-induced proliferation. Nevertheless, all these Th1 subsets, including conventional Ag-induced Th1 cells, produced IFN-γ in response to IL-12 in a Tyk2-dependent manner. Importantly, such Tyk2-dependent bystander IFN-γ production of any Th1 subsets conferred early protection against L. monocytogenes infection. Thus, Tyk2-mediated IL-12 signaling is differentially required for the development of different Th1 cell subsets but similarly induces their bystander IFN-γ production, which contributes to innate host defense against infection with intracellular bacteria.
    The Journal of Immunology 04/2014; · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protrudin is a membrane protein that regulates polarized vesicular trafficking in neurons. The protrudin gene (ZFYVE27) is mutated in a subset of individuals with hereditary spastic paraplegia (HSP), and protrudin is therefore also referred to as spastic paraplegia (SPG) 33. We have now generated mice that express a transgene for dual epitope-tagged protrudin under the control of a neuron-specific promoter, and we have subjected highly purified protrudin-containing complexes isolated from the brain of these mice to proteomics analysis in order to identify proteins that associate with protrudin. Protrudin was found to interact with other HSP-related proteins including myelin proteolipid protein 1 (SPG2), atlastin-1 (SPG3A), REEP1 (SPG31), REEP5 (similar to REEP1), KIF5A (SPG10), KIF5B, KIF5C, and reticulon 1, 3, and 4 (similar to reticulon 2, SPG12). Membrane topology analysis indicated that one of three hydrophobic segments of protrudin forms a hydrophobic hairpin domain similar to those of other SPG proteins. Protrudin was found to localize predominantly to the tubular endoplasmic reticulum (ER), and forced expression of protrudin promoted the formation and stabilization of the tubular ER network. The protrudin(G191V) mutant, which has been identified in a subset of HSP patients, manifested an increased intracellular stability, and cells expressing this mutant showed an increased susceptibility to ER stress. Our results thus suggest that protrudin contributes to the regulation of ER morphology and function, and that its deregulation by mutation is a causative defect in HSP.
    Journal of Biological Chemistry 03/2014; · 4.65 Impact Factor
  • Akinobu Matsumoto, Shoichiro Takeishi, Keiichi I Nakayama
    [Show abstract] [Hide abstract]
    ABSTRACT: T cells are key components of the immune system, playing a central role in cell-mediated immunity. The sequential differentiation of T cells is associated with strict regulation of the cell cycle at each developmental stage. Proliferation and differentiation decisions made by these cells are regulated by a balance between p53 activity and pre-T cell receptor (TCR) signaling. The relation between maintenance of this balance and the function of cell cycle regulators has remained largely unknown, however. We now show that mice with T cell-specific deficiency of the cyclin-dependent kinase inhibitor p57 manifest a differentiation block at the early stage of T cell maturation. Further genetic analysis revealed that this defect is attributable to an imbalance between p53 activity and pre-TCR signaling caused by hyperactivation of the E2F-p53 pathway. Moreover, ablation of both p57 and p53 in T cells led to the development of aggressive thymic lymphomas with a reduced latency compared with that apparent for p53-deficient mice, whereas ablation of p57 alone did not confer susceptibility to this hematologic malignancy. Our results thus reveal that the p57-E2F-p53 axis plays a pivotal role in the proper development of T cells as well as in the prevention of lymphomagenesis.
    Blood 03/2014; · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cyclin-dependent kinase 2 (Cdk2) is dispensable for mitotic cell cycle progression and Cdk2 knockout mice are viable due to the compensatory functions of other Cdks. In order to assess the role of Cdk2 under limiting conditions, we used Skp2 knockout mice that exhibit increased levels of Cdk inhibitor, p27(Kip1), which is able to inhibit Cdk2 and Cdk1. Knockdown of Cdk2 abrogated proliferation of Skp2(-/-) mouse embryonic fibroblasts, encouraging us to generate Cdk2(-/-)Skp2(-/-) double knockout mice. Cdk2(-/-)Skp2(-/-) double knockout mice are viable and display similar phenotypes as Cdk2(-/-) and Skp2(-/-) mice. Unexpectedly, fibroblasts generated from Cdk2(-/-)Skp2(-/-) double knockout mice proliferated at normal rates. The increased stability of p27 observed in Skp2(-/-) MEFs was not observed in Cdk2(-/-)Skp2(-/-) double knockout fibroblasts indicating that in the absence of Cdk2, p27 is regulated by Skp2-independent mechanisms. Ablation of other ubiquitin ligases for p27 such as KPC1, DDB1, and Pirh2 did not restore stability of p27 in Cdk2(-/-)Skp2(-/-) MEFs. Our findings point towards novel and alternate pathways for p27 regulation.
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 01/2014; 1843:436-445. · 4.81 Impact Factor
  • Journal of Neurology 11/2013; · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protrudin is a membrane protein that regulates polarized vesicular transport. Now, we have identified a novel isoform of protrudin (protrudin-L) that contains an additional seven amino acids between the FFAT motif and the coiled-coil domain compared with the conventional isoform (protrudin-S) as a result of alternative splicing of a microexon (exon L). Protrudin-L mRNA was found to be mostly restricted to the central nervous system in mice, whereas protrudin-S mRNA was detected in all tissues examined. With the use of a splicing reporter minigene that produces two distinct fluorescent proteins in a manner dependent on the splicing pattern of protrudin transcripts, we found that most neurons express protrudin-L, whereas astrocytes express both protrudin isoforms and oligodendrocytes express only protrudin-S. Protrudin-L associated to a greater extent with vesicle-associated membrane protein-associated protein (VAP) than protrudin-S. Expression of protrudin-L in hippocampal neurons of protrudin-deficient mice also promoted neurite outgrowth more efficiently than protrudin-S. Our results suggest that protrudin-L is a neuron-specific protrudin isoform that promotes axonal elongation and contributes to the establishment of neuronal polarity.
    Genes to Cells 11/2013; · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Skp1-Cul1-F-box protein (SCF) complex is one of the most well-characterized types of ubiquitin ligase (E3), with the E3 activity of the complex being regulated in part at the level of complex formation. Fbxl3 is an F-box protein that is responsible for the ubiquitylation and consequent degradation of Cryptochromes (Crys) and thus regulates oscillation of the circadian clock. Here we show that formation of the SCF(Fbxl3) complex is regulated by substrate binding in vivo. Fbxl3 did not associate with Skp1 and Cul1 to a substantial extent in transfected mammalian cells. Unexpectedly, however, formation of the SCF(Fbxl3) complex was markedly promoted by forced expression of its substrate Cry1 in these cells. A mutant form of Fbxl3 that does not bind to Cry1 was unable to form an SCF complex, suggesting that interaction of Cry1 with Fbxl3 is essential for formation of SCF(Fbxl3). In contrast, recombinant Fbxl3 associated with recombinant Skp1 and Cul1 in vitro even in the absence of recombinant Cry1. Domain-swap analysis revealed that the COOH-terminal leucine-rich repeat domain of Fbxl3 attenuates the interaction of Skp1, suggesting that a yet unknown protein associated with the COOH-terminal domain of Fbxl3 and inhibited SCF complex formation. Our results thus provide important insight into the regulation of both SCF ubiquitin ligase activity and circadian rhythmicity.
    Journal of Biological Chemistry 09/2013; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Superoxide production by Nox1, a member of the Nox family NAPDH oxidases, requires expression of its regulatory soluble proteins Noxo1 (Nox organizer 1) and Noxa1 (Nox activator 1), and is markedly enhanced upon cell stimulation with phorbol 12-myristate 13-acetate (PMA), a potent activator of protein kinase C (PKC). The mechanism underlying PMA-induced enhancement of Nox1 activity, however, has remained to be elucidated. Here we show that, in response to PMA, Noxo1 undergoes phosphorylation at multiple sites, which is inhibited by the PKC inhibitor GF109203X. Among them, Thr-341 in Noxo1 is directly phosphorylated by PKC in vitro, and alanine substitution for this residue reduces not only PMA-induced Noxo1 phosphorylation but also PMA-dependent enhancement of Nox1-catalyzed superoxide production. Phosphorylation of Thr-341 allows Noxo1 to sufficiently interact with Noxa1, an interaction that participates in Nox1 activation. Thus phosphorylation of Noxo1 at Thr-341 appears to play a crucial role in PMA-elicited activation of Nox1, providing a molecular link between PKC-mediated signal transduction and Nox1-catalyzed superoxide production. Furthermore, Ser-154 in Noxo1 is phosphorylated in both resting and PMA-stimulated cells, and the phosphorylation likely participates in a PMA-independent constitutive activity of Nox1. Ser-154 may be also involved in protein kinase A (PKA)-mediated regulation of Nox1; this serine is the major residue that is phosphorylated by PKA in vitro. Thus phosphorylation of Noxo1 at Thr-341 and at Ser-154 appears to regulate Nox1 activity in a different manner. This article is protected by copyright. All rights reserved.
    FEBS Journal 08/2013; · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although identification of substrates for an enzyme is a key step in elucidation of its biological functions, detection of the interaction between enzymes and substrates remains challenging. We recently developed a new approach, termed DiPIUS (differential proteomics-based identification of ubiquitylation substrates), for the discovery of substrates of ubiquitin ligases. We have now applied DiPIUS to Fbxw7, the F-box protein component of an SCF-type ubiquitin ligase, and thereby identified two similar transcription factors, OASIS and BBF2H7, as candidate substrates. Co-immunoprecipitation analysis confirmed that the α and γ isoforms of Fbxw7 interact with OASIS and BBF2H7 in vivo. Sustained overexpression of Fbxw7 resulted in marked down-regulation of OASIS and BBF2H7, whereas RNAi-mediated Fbxw7 depletion stabilized both proteins. Mutation of a putative Cdc4 phosphodegron in OASIS and BBF2H7 attenuated their association with Fbxw7 and resulted in their stabilization. Depletion of Fbxw7 promoted the differentiation of mouse C2C12 mesenchymal cells into osteoblasts in association with the accumulation of OASIS. Conversely, overexpression of Fbxw7 in C2C12 cells resulted in down-regulation of Col1A1 mRNA, a target of OASIS. Conditional ablation of Fbxw7 in primary mouse mesenchymal cells promoted chondrogenesis in association with up-regulation of BBF2H7, whereas overexpression of Fbxw7 inhibited chondrogenesis in ATDC5 cells. Collectively, our results suggest that OASIS and BBF2H7 are bona fide substrates of Fbxw7, and that Fbxw7 controls osteogenesis and chondrogenesis by targeting OASIS and BBF2H7, respectively, for degradation.
    Journal of Biological Chemistry 08/2013; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Imatinib eradicates dividing progenitor cells of chronic myeloid leukemia (CML) but does not effectively target nondividing leukemia-initiating cells (LICs); thus, the disease often relapse after its discontinuation. We now show that Fbxw7 plays a pivotal role in maintenance of quiescence in LICs of CML by reducing the level of c-Myc. Abrogation of quiescence in LICs by Fbxw7 ablation increased their sensitivity to imatinib, and the combination of Fbxw7 ablation with imatinib treatment resulted in a greater depletion of LICs than of normal hematopoietic stem cells in mice. Purging of LICs by targeting Fbxw7 to interrupt their quiescence and subsequent treatment with imatinib may thus provide the basis for a promising therapeutic approach to CML.
    Cancer cell 03/2013; 23(3):347-61. · 25.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The molecular mechanisms regulating leukemia-initiating cell (LIC) function are of important clinical significance. We use chronic myelogenous leukemia (CML) as a model of LIC-dependent malignancy and identify the interaction between the ubiquitin ligase Fbw7 and its substrate c-Myc as a regulator of LIC homeostasis. Deletion of Fbw7 leads to c-Myc overexpression, p53-dependent LIC-specific apoptosis, and the eventual inhibition of tumor progression. A decrease of either c-Myc protein levels or attenuation of the p53 response rescues LIC activity and disease progression. Further experiments showed that Fbw7 expression is required for survival and maintenance of human CML LIC. These studies identify a ubiquitin ligase:substrate pair regulating LIC activity, suggesting that targeting of the Fbw7:c-Myc axis is an attractive therapy target in refractory CML.
    Cancer cell 03/2013; 23(3):362-75. · 25.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Throughout life, neural stem cells (NSCs) in the adult hippocampus persistently generate new neurons that modify the neural circuitry. Adult NSCs constitute a relatively quiescent cell population but can be activated by extrinsic neurogenic stimuli. However, the molecular mechanism that controls such reversible quiescence and its physiological significance have remained unknown. Here, we show that the cyclin-dependent kinase inhibitor p57kip2 (p57) is required for NSC quiescence. In addition, our results suggest that reduction of p57 protein in NSCs contributes to the abrogation of NSC quiescence triggered by extrinsic neurogenic stimuli such as running. Moreover, deletion of p57 in NSCs initially resulted in increased neurogenesis in young adult and aged mice. Long-term p57 deletion, on the contrary, led to NSC exhaustion and impaired neurogenesis in aged mice. The regulation of NSC quiescence by p57 might thus have important implications for the short-term (extrinsic stimuli-dependent) and long-term (age-related) modulation of neurogenesis.
    The EMBO Journal 03/2013; · 9.82 Impact Factor

Publication Stats

8k Citations
1,766.59 Total Impact Points

Institutions

  • 2002–2014
    • Kyushu University
      • • Department of Molecular and Cellular Biology
      • • Medical Institute of Bioregulation - MIB Hospital
      • • Graduate School of Dental Science
      Hukuoka, Fukuoka, Japan
  • 2012
    • University of Washington Seattle
      Seattle, Washington, United States
    • Japan Science and Technology Agency (JST)
      Edo, Tōkyō, Japan
  • 2006–2012
    • Hamamatsu University School of Medicine
      • • Division of Molecular Biology
      • • Division of Biochemistry
      Hamamatu, Shizuoka, Japan
    • Niigata University
      Niahi-niigata, Niigata, Japan
  • 2011
    • Albert Einstein College of Medicine
      New York City, New York, United States
  • 2008–2011
    • Keio University
      • School of Medicine
      Edo, Tōkyō, Japan
    • Emory University
      • Center for Neurodegenerative Disease
      Atlanta, Georgia, United States
  • 2006–2011
    • Tohoku University
      • Graduate School of Medicine
      Japan
  • 2009–2010
    • Memorial Sloan-Kettering Cancer Center
      • • Division of Cancer Biology & Genetics
      • • Department of Pathology
      New York City, NY, United States
    • Nagasaki University
      • Graduate School of Biomedical Sciences
      Nagasaki-shi, Nagasaki-ken, Japan
  • 2004–2009
    • Hokkaido University
      • • Graduate School of Medicine
      • • Department of Ophthalmology
      • • Department of Oral Biochemistry and Molecular Biology
      Sapporo-shi, Hokkaido, Japan
    • The University of Tokushima
      • Department of Molecular Immunoligy
      Tokusima, Tokushima, Japan
    • National Institute of Advanced Industrial Science and Technology
      • Biomedicinal Information Research Center
      Tokyo, Tokyo-to, Japan
  • 2007
    • Fukuoka University
      Hukuoka, Fukuoka, Japan
  • 2003
    • Hokkaido University Hospital
      • Division of Ophthalmology
      Sapporo-shi, Hokkaido, Japan
  • 2002–2003
    • Centre for Cellular and Molecular Biology
      Bhaganagar, Andhra Pradesh, India