Takeshi Marumo

Kyoto University, Kyoto, Kyoto-fu, Japan

Are you Takeshi Marumo?

Claim your profile

Publications (4)14.09 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Treatment with DAPT, an inhibitor of the Notch-activating enzyme, γ-secretase is known to reduce damage to ischemic brain. However, the molecular mechanisms supporting this therapeutic effect are not fully understood. Here we demonstrated that Notch/RBP-J signaling is activated in NG2(+) glial progenitors and reactive astrocytes such as GFAP(+) cells, Nestin(+) cells and RC2(+) cells, using Notch/RBP-J signaling reporter mice. 3-day DAPT treatment reduced the number of reactive astrocytes but not NG2(+) glial progenitors. BrdU labeling experiments have shown that this reduction was due to decreased proliferation of reactive astrocytes. DAPT inhibited nuclear-translocation of Olig2, which is indispensable for proliferation and differentiation of reactive astrocytes. These findings suggest that Notch signaling might promote proliferation and differentiation of reactive astrocytes through the regulation of nucleo-cytoplasmic translocation of Olig2.
    Neuroscience Research 02/2013; · 2.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral ischemia causes neuronal death and disruption of neural circuits in the central nervous system. Various neurological disorders caused by cerebral infarction can severely impair quality of life and are potentially fatal. Functional recovery in the chronic stage mainly depends on physical treatment and rehabilitation. We aim to establish cell therapy for cerebral ischemia using embryonic stem (ES) cells, which have self-renewing and pluripotent capacities. We previously reported that the transplanted monkey and mouse ES cell-derived neural progenitors, by stromal cell-derived inducing activity method, could survive and differentiate into various types of neurons and glial cells, and form the neuronal network in basal ganglia. In this report, we induced the differentiation of the neural progenitors from mouse ES cells using the serum-free suspension culture method and confirmed the expression of various basal ganglial neuronal markers and neurotransmitter-related markers both in vitro and in vivo, which was thought to be suitable for replacing damaged striatum after middle cerebral artery occlusion. This is the first report that used selectively induced telencephalic neural progenitors into ischemia model. Furthermore, we purified the progenitors expressing the neural progenitor marker Sox1 by fluorescence-activated cell sorting and Sox1-positive neural progenitors prevented tumor formation in ischemic brain for 2 months. We also analyzed survival and differentiation of transplanted cells and functional recovery from ischemic damage.
    Laboratory Investigation 02/2012; 92(4):522-31. · 3.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thioredoxin (Trx) is a 12-kDa protein ubiquitously expressed in all living cells that fulfills a variety of biological functions related to cell proliferation and apoptosis. It is characterized by the highly conserved reduction/oxidation (redox)-active site sequence Trp-Cys-Gly-Pro-Cys-Lys. Trx acts as a powerful antioxidant and plays an important role in maintaining critical protein thiols in the reduced state. Moreover, it has been shown to scavenge reactive oxygen species (ROS) and to protect against oxidative stress. We have reported that Trx-1 protects against neuronal damage during focal ischemia. However, the mechanisms underlying this protective effect and the effect of Trx-1 on neuronal apoptosis during ischemia have not been fully clarified. In this study, we analyzed the effect of Trx-1 overexpression against neuronal degeneration after a short duration of transient brain ischemia. Mild focal ischemia was reported to induce neuronal death through apoptosis. We employed Fluorojade-B staining to detect neuronal degeneration. In Trx transgenic mice, a smaller number of Fluorojade-B-positive neurons were detected after ischemia-reperfusion than in wild-type mice. In addition, we detected cleaved caspase-3- and TUNEL-positive cells, which indicated caspase-dependent apoptosis. Fewer caspase-3- and TUNEL-positive neurons were detected after ischemia-reperfusion in Trx transgenic mice than in wild-type mice. Furthermore, Akt signaling was reported to play a role in neuronal survival in Trx-1 overexpressing mice. After ischemia-reperfusion, Western blot and immunohistochemical analysis indicated that phosphorylation of Akt was enhanced in Trx transgenic mice after ischemia-reperfusion. Intraventricular injection of LY294002,which is a phosphoinositide 3-kinase (PI3K), vanished the neuroprotective effect in Trx-1 transgenic mice. These results indicate that Trx-1 overexpression protects neurons from apoptosis after ischemia-reperfusion.
    Brain research 04/2009; 1272:62-70. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enhanced matrix metalloproteinases (MMPs) can cause vasogenic edema and hemorrhagic transformation after cerebral ischemia, and affect the extent of ischemic injury. We hypothesized that the endogenous MMP inhibitors, tissue inhibitor of MMPs (TIMPs), were essential to protect against blood-brain barrier (BBB) disruption after ischemia by regulating the activities of MMPs. We confirmed the transition of MMP-2 and MMP-9, and the TIMPs family after 30 mins of middle cerebral artery occlusion, and elucidated the function of TIMP-1 and TIMP-2 in focal ischemia, using TIMP-1(-/-) and TIMP-2(-/-) mice. TIMP-1 mRNA expression was gradually increased until 24 h after reperfusion. In TIMP-1(-/-) mice, MMP-9 protein expression and gelatinolytic activity were significantly more augmented after cerebral ischemia than those in WT mice, and were accompanied by exacerbated BBB disruption, neuronal apoptosis, and ischemic injury. In contrast, TIMP-2 gene deletion mice exhibited no significant difference in MMP expressions and the degree of ischemic injury despite an increased Evans blue leakage. These results suggest that TIMP-1 inhibits MMP-9 activity and can play a neuroprotective role in cerebral ischemia.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 06/2008; 28(10):1674-85. · 5.46 Impact Factor