David B Lowry

Harvard University, Cambridge, Massachusetts, United States

Are you David B Lowry?

Claim your profile

Publications (17)94.17 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The regulation of gene expression is crucial for an organism's development and response to stress, and an understanding of the evolution of gene expression is of fundamental importance to basic and applied biology. To improve this understanding, we conducted expression quantitative trait locus (eQTL) mapping in the Tsu-1 (Tsushima, Japan) × Kas-1 (Kashmir, India) recombinant inbred line population of Arabidopsis thaliana across soil drying treatments. We then used genome resequencing data to evaluate whether genomic features (promoter polymorphism, recombination rate, gene length, and gene density) are associated with genes responding to the environment (E) or with genes with genetic variation (G) in gene expression in the form of eQTLs. We identified thousands of genes that responded to soil drying and hundreds of main-effect eQTLs. However, we identified very few statistically significant eQTLs that interacted with the soil drying treatment (GxE eQTL). Analysis of genome resequencing data revealed associations of several genomic features with G and E genes. In general, E genes had lower promoter diversity and local recombination rates. By contrast, genes with eQTLs (G) had significantly greater promoter diversity and were located in genomic regions with higher recombination. These results suggest that genomic architecture may play an important a role in the evolution of gene expression.
    The Plant Cell 09/2013; · 9.25 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Examining intraspecific variation in growth and function in relation to climate may provide insight into physiological evolution and adaptation, and is important for predicting species responses to climate change. Under common garden conditions, we grew nine genotypes of the C4 species Panicum virgatum originating from different temperature and precipitation environments. We hypothesized that genotype productivity, morphology and physiological traits would be correlated with climate of origin, and a suite of adaptive traits would show high broad-sense heritability (H(2) ). Genotype productivity and flowering time increased and decreased, respectively, with home-climate temperature, and home-climate temperature was correlated with genotypic differences in a syndrome of morphological and physiological traits. Genotype leaf and tiller size, leaf lamina thickness, leaf mass per area (LMA) and C : N ratios increased with home-climate temperature, whereas leaf nitrogen per unit mass (Nm ) and chlorophyll (Chl) decreased with home-climate temperature. Trait variation was largely explained by genotypic differences (H(2) = 0.33-0.85). Our results provide new insight into the role of climate in driving functional trait coordination, local adaptation and genetic divergence within species. These results emphasize the importance of considering intraspecific variation in future climate change scenarios.
    New Phytologist 05/2013; · 6.74 Impact Factor
  • Source
  • [show abstract] [hide abstract]
    ABSTRACT: • Premise of study: Understanding the relationship between climate, adaptation, and population structure is of fundamental importance to botanists because these factors are crucial for the evolution of biodiversity and the response of species to future climate change. Panicum hallii is an emerging model system for perennial grass and bioenergy research, yet very little is known about the relationship between climate and population structure in this system. • Methods: We analyzed geographic population differentiation across 39 populations of P. hallii along a longitudinal transect from the savannas of central Texas through the deserts of Arizona and New Mexico. A combination of morphological and genetic (microsatellite) analysis was used to explore patterns of population structure. • Key results: We found strong differentiation between high elevation western desert populations and lower elevation eastern populations of P. hallii, with a pronounced break in structure occurring in western Texas. In addition, we confirmed that there are high levels of morphological and genetic structure between previous recognized varieties (var. hallii and var. filipes) within this species. • Conclusions: The results of this study suggest that patterns of population structure within P. hallii may be driven by climatic variation over space. Overall, this study lays the groundwork for future studies on the genetics of local adaptation and reproductive isolation in this system.
    American Journal of Botany 03/2013; 100(3):592-601. · 2.59 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Most species are superbly and intricately adapted to the environments in which they live. Adaptive evolution by natural selection is the primary force shaping biological diversity. Differences between closely related species in ecologically selected characters such as habitat preference, reproductive timing, courtship behavior, or pollinator attraction may prevent interbreeding in nature, causing reproductive isolation. But does ecological adaptation cause reproductive incompatibilities such as hybrid sterility or lethality? Although several genes causing hybrid incompatibilities have been identified, there is intense debate over whether the genes that contribute to ecological adaptations also cause hybrid incompatibilities. Thirty years ago, a genetic study of local adaptation to copper mine soils in the wildflower identified a locus that appeared to cause copper tolerance and hybrid lethality in crosses to other populations. But do copper tolerance and hybrid lethality have the same molecular genetic basis? Here we show, using high-resolution genome mapping, that copper tolerance and hybrid lethality are not caused by the same gene but are in fact separately controlled by two tightly linked loci. We further show that selection on the copper tolerance locus indirectly caused the hybrid incompatibility allele to go to high frequency in the copper mine population because of hitchhiking. Our results provide a new twist on Darwin's original supposition that hybrid incompatibilities evolve as an incidental by-product of ordinary adaptation to the environment.
    PLoS Biology 02/2013; 11(2):e1001497. · 12.69 Impact Factor
  • David B Lowry
    New Phytologist 06/2012; 194(4):888-90. · 6.74 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: • Premise of the study: We developed microsatellites for Panicum hallii for studies of gene flow, population structure, breeding experiments, and genetic mapping. • Methods and Results: Next-generation (454) genomic sequence data were used to design markers. Eighteen robust markers were discovered, 15 of which were polymorphic across six accessions of P. hallii var. hallii. Fourteen of the markers cross-amplified in a P. capillare accession. For the 15 polymorphic markers, the total number of alleles per locus ranged from two to 26 (mean: 11.0) across six populations (11-19 individuals per population). Observed heterozygosity (mean: 0.031) was 13.7 times lower than the expected heterozygosity (mean: 0.426). • Conclusions: The deficit of heterozygous individuals is consistent with P. hallii having a high rate of self-fertilization. These markers will be useful for studies in P. hallii and related species.
    American Journal of Botany 03/2012; 99(3):e114-6. · 2.59 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Natural variation in the regulation of the accumulation of mineral nutrients and trace elements in plant tissues is crucial to plant metabolism, development, and survival across different habitats. Studies of the genetic basis of natural variation in nutrient metabolism have been facilitated by the development of ionomics. Ionomics is a functional genomic approach for the identification of the genes and gene networks that regulate the elemental composition, or ionome, of an organism. In this study, we evaluated the genetic basis of divergence in elemental composition between an inland annual and a coastal perennial accession of Mimulus guttatus using a recombinant inbred line (RIL) mapping population. Out of 20 elements evaluated, Mo and Cd were the most divergent in accumulation between the two accessions and were highly genetically correlated in the RILs across two replicated experiments. We discovered two major quantitative trait loci (QTL) for Mo accumulation, the largest of which consistently colocalized with a QTL for Cd accumulation. Interestingly, both Mo QTLs also colocalized with the two M. guttatus homologues of MOT1, the only known plant transporter to be involved in natural variation in molybdate uptake.
    PLoS ONE 01/2012; 7(1):e30730. · 3.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: • Premise of study: Botanists have long been interested in the reasons for genetic variation among individuals, populations, and species of plants. The anthocyanin pathway is ideal for studying the evolution of such phenotypic variation. • Methods: We used a combination of quantitative trait loci mapping and association studies to understand the genetic basis of variation in five anthocyanin phenotypes including calyx, corolla, and leaf coloration patterns that vary within and among populations of Mimulus guttatus. We then examined what genes might be responsible for this phenotypic variation and whether one of the traits, calyx spotting, is randomly distributed across the geographic range of the species. • Key results: All five phenotypes in M. guttatus were primarily controlled by the same major locus (PLA1), which contains a tandem array of three R2R3-MYB genes known to be involved in the evolution of flower color in a related species of Mimulus. Calyx spotting was nonrandomly distributed across the range of M. guttatus and correlated with multiple climate variables. • Conclusions: The results of this study suggest that variation in R2R3-MYB genes is the primary cause of potentially important anthocyanin phenotypic variation within and among populations of M. guttatus, a finding consistent with recent theoretical and empirical research on flower color evolution.
    American Journal of Botany 12/2011; 99(1):82-91. · 2.59 Impact Factor
  • Source
    David B Lowry
    [show abstract] [hide abstract]
    ABSTRACT: Tremendous advances in genetic and genomic techniques have resulted in the capacity to identify genes involved in adaptive evolution across numerous biological systems. One of the next major steps in evolutionary biology will be to determine how landscape-level geographical and environmental features are involved in the distribution of this functional adaptive genetic variation. Here, I outline how an emerging synthesis of multiple disciplines has and will continue to facilitate a deeper understanding of the ways in which heterogeneity of the natural landscapes mould the genomes of organisms.
    Biology letters 08/2010; 6(4):502-4. · 3.35 Impact Factor
  • Source
    M C Hall, D B Lowry, J H Willis
    [show abstract] [hide abstract]
    ABSTRACT: Local adaptation is considered to be the result of fitness trade-offs for particular phenotypes across different habitats. However, it is unclear whether such phenotypic trade-offs exist at the level of individual genetic loci. Local adaptation could arise from trade-offs of alternative alleles at individual loci or by complementary sets of loci with different fitness effects of alleles in one habitat but selective neutrality in the alternative habitat. To evaluate the genome-wide basis of local adaptation, we performed a field-based quantitative trait locus (QTL) mapping experiment on recombinant inbred lines (RILs) created from coastal perennial and inland annual races of the yellow monkeyflower (Mimulus guttatus) grown reciprocally in native parental habitats. Overall, we detected 19 QTLs affecting one or more of 16 traits measured in two environments, most of small effect. We identified 15 additional QTL effects at two previously identified candidate QTLs [DIVERGENCE (DIV)]. Significant QTL by environment interactions were detected at the DIV loci, which was largely attributable to genotypic differences at a single field site. We found no detectable evidence for trade-offs for any one component of fitness, although DIV2 showed a trade-off involving different fitness traits between sites, suggesting that local adaptation is largely controlled by non-overlapping loci. This is surprising for an outcrosser, implying that reduced gene flow prevents the evolution of individuals adapted to multiple environments. We also determined that native genotypes were not uniformly adaptive, possibly reflecting fixed mutational load in one of the populations.
    Molecular Ecology 07/2010; 19(13):2739-53. · 6.28 Impact Factor
  • Source
    David B Lowry, John H Willis
    [show abstract] [hide abstract]
    ABSTRACT: The role of chromosomal inversions in adaptation and speciation is controversial. Historically, inversions were thought to contribute to these processes either by directly causing hybrid sterility or by facilitating the maintenance of co-adapted gene complexes. Because inversions suppress recombination when heterozygous, a recently proposed local adaptation mechanism predicts that they will spread if they capture alleles at multiple loci involved in divergent adaptation to contrasting environments. Many empirical studies have found inversion polymorphisms linked to putatively adaptive phenotypes or distributed along environmental clines. However, direct involvement of an inversion in local adaptation and consequent ecological reproductive isolation has not to our knowledge been demonstrated in nature. In this study, we discovered that a chromosomal inversion polymorphism is geographically widespread, and we test the extent to which it contributes to adaptation and reproductive isolation under natural field conditions. Replicated crosses between the prezygotically reproductively isolated annual and perennial ecotypes of the yellow monkeyflower, Mimulus guttatus, revealed that alternative chromosomal inversion arrangements are associated with life-history divergence over thousands of kilometers across North America. The inversion polymorphism affected adaptive flowering time divergence and other morphological traits in all replicated crosses between four pairs of annual and perennial populations. To determine if the inversion contributes to adaptation and reproductive isolation in natural populations, we conducted a novel reciprocal transplant experiment involving outbred lines, where alternative arrangements of the inversion were reciprocally introgressed into the genetic backgrounds of each ecotype. Our results demonstrate for the first time in nature the contribution of an inversion to adaptation, an annual/perennial life-history shift, and multiple reproductive isolating barriers. These results are consistent with the local adaptation mechanism being responsible for the distribution of the two inversion arrangements across the geographic range of M. guttatus and that locally adaptive inversion effects contribute directly to reproductive isolation. Such a mechanism may be partially responsible for the observation that closely related species often differ by multiple chromosomal rearrangements.
    PLoS Biology 01/2010; 8(9). · 12.69 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Soil moisture is a key factor affecting plant abundance and distribution, both across and within species. In response to water limitation, plants have evolved numerous morphological, physiological, and phenological adaptations. In both well-watered and water-limited conditions, we identified considerable natural variation in drought-related whole-plant and leaf-level traits among closely related members of the Mimulus guttatus species complex that occupy a diversity of habitats in the field. The self-fertilizing Mimulus nasutus and serpentine-endemic Mimulus nudatus demonstrated the overall greatest tolerance to soil water limitation, exhibiting the smallest reduction in seed set relative to well-watered conditions. This may be due in part to early flowering, faster fruit development, and low stomatal density. In contrast, flowering of coastal M. guttatus was so delayed that it precluded any seed production in water-limited conditions. This range of phenotypic responses to soil water deficit in Mimulus, coupled with developing genomic resources, holds considerable promise for identifying genomic variation responsible for adaptive responses to soil water availability.
    Oecologia 10/2009; 162(1):23-33. · 3.01 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Local adaptation is a well-established phenomenon whereby habitat-mediated natural selection drives the differentiation of populations. However, little is known about how specific traits and loci combine to cause local adaptation. Here, we conducted a set of experiments to determine which physiological mechanisms contribute to locally adaptive divergence in salt tolerance between coastal perennial and inland annual ecotypes of Mimulus guttatus. Quantitative trait locus (QTL) mapping was used to discover loci involved in salt spray tolerance and leaf sodium (Na(+)) concentration. To determine whether these QTLs confer fitness in the field, we examined their effects in reciprocal transplant experiments using recombinant inbred lines (RILs). Coastal plants had constitutively higher leaf Na(+) concentrations and greater levels of tissue tolerance, but no difference in osmotic stress tolerance. Three QTLs contributed to salt spray tolerance and two QTLs to leaf Na(+) concentration. All three salt-spray tolerance QTLs had a significant fitness effects at the coastal field site but no effects inland. Leaf Na(+) QTLs had no detectable fitness effects in the field. * Physiological results are consistent with adaptation of coastal populations to salt spray and soil salinity. Field results suggest that there may not be trade-offs across habitats for alleles involved in local salt spray adaptations.
    New Phytologist 07/2009; 183(3):776-88. · 6.74 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Adaptive divergence due to habitat differences is thought to play a major role in formation of new species. However it is rarely clear the extent to which individual reproductive isolating barriers related to habitat differentiation contribute to total isolation. Furthermore, it is often difficult to determine the specific environmental variables that drive the evolution of those ecological barriers, and the geographic scale at which habitat-mediated speciation occurs. Here, we address these questions through an analysis of the population structure and reproductive isolation between coastal perennial and inland annual forms of the yellow monkeyflower, Mimulus guttatus. We found substantial morphological and molecular genetic divergence among populations derived from coast and inland habitats. Reciprocal transplant experiments revealed nearly complete reproductive isolation between coast and inland populations mediated by selection against immigrants and flowering time differences, but not postzygotic isolation. Our results suggest that selection against immigrants is a function of adaptations to seasonal drought in inland habitat and to year round soil moisture and salt spray in coastal habitat. We conclude that the coast and inland populations collectively comprise distinct ecological races. Overall, this study suggests that adaptations to widespread habitats can lead to the formation of reproductively isolated species.
    Evolution 09/2008; 62(9):2196-214. · 4.86 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Speciation is characterized by the evolution of reproductive isolation between two groups of organisms. Understanding the process of speciation requires the quantification of barriers to reproductive isolation, dissection of the genetic mechanisms that contribute to those barriers and determination of the forces driving the evolution of those barriers. Through a comprehensive analysis involving 19 pairs of plant taxa, we assessed the strength and patterns of asymmetry of multiple prezygotic and postzygotic reproductive isolating barriers. We then reviewed contemporary knowledge of the genetic architecture of reproductive isolation and the relative role of chromosomal and genic factors in intrinsic postzygotic isolation. On average, we found that prezygotic isolation is approximately twice as strong as postzygotic isolation, and that postmating barriers are approximately three times more asymmetrical in their action than premating barriers. Barriers involve a variable number of loci, and chromosomal rearrangements may have a limited direct role in reproductive isolation in plants. Future research should aim to understand the relationship between particular genetic loci and the magnitude of their effect on reproductive isolation in nature, the geographical scale at which plant speciation occurs, and the role of different evolutionary forces in the speciation process.
    Philosophical Transactions of The Royal Society B Biological Sciences 07/2008; 363(1506):3009-21. · 6.23 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The plant genus Mimulus is rapidly emerging as a model system for studies of evolutionary and ecological functional genomics. Mimulus contains a wide array of phenotypic, ecological and genomic diversity. Numerous studies have proven the experimental tractability of Mimulus in laboratory and field studies. Genomic resources currently under development are making Mimulus an excellent system for determining the genetic and genomic basis of adaptation and speciation. Here, we introduce some of the phenotypic and genetic diversity in the genus Mimulus and highlight how direct genetic studies with Mimulus can address a wide spectrum of ecological and evolutionary questions. In addition, we present the genomic resources currently available for Mimulus and discuss future directions for research. The integration of ecology and genetics with bioinformatics and genome technology offers great promise for exploring the mechanistic basis of adaptive evolution and the genetics of speciation.
    Heredity 03/2008; 100(2):220-30. · 4.11 Impact Factor

Publication Stats

309 Citations
135 Downloads
982 Views
94.17 Total Impact Points

Institutions

  • 2013
    • Harvard University
      Cambridge, Massachusetts, United States
  • 2012–2013
    • University of Texas at Austin
      Austin, Texas, United States
  • 2008–2012
    • Duke University Medical Center
      Durham, North Carolina, United States
  • 2009
    • Duke University
      • Department of Biology
      Durham, NC, United States