H. E. Bignall

Universiti Tunku Abdul Rahman, Kuala Lumpor, Kuala Lumpur, Malaysia

Are you H. E. Bignall?

Claim your profile

Publications (90)132.6 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have conducted the first parallax and proper motion measurements of 6.7 GHz methanol maser emission using the Australian Long Baseline Array (LBA). The parallax of G339.884$-$1.259 measured from five epochs of observations is 0.48$\pm $0.08 mas, corresponding to a distance of $2.1^{+0.4}_{-0.3}$ kpc, placing it in the Scutum spiral arm. This is consistent (within the combined uncertainty) with the kinematic distance estimate for this source at 2.5$\pm $0.5 kpc using the latest Solar and Galactic rotation parameters. We find from the Lyman continuum photon flux that the embedded core of the young star is of spectral type B1, demonstrating that luminous 6.7 GHz methanol masers can be associated with high-mass stars towards the lower end of the mass range.
    The Astrophysical Journal 03/2015; 805(2). DOI:10.1088/0004-637X/805/2/129 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Variability of radio-emitting active galactic nuclei can be used to probe both intrinsic variations arising from shocks, flares, and other changes in emission from regions surrounding the central supermassive black hole, as well as extrinsic variations due to scattering by structures in our own Galaxy. Such interstellar scattering also probes the structure of the emitting regions, with microarcsecond resolution. Current studies have necessarily been limited to either small numbers of objects monitored over long periods of time, or large numbers of objects but with poor time sampling. The dramatic increase in survey speed engendered by the Square Kilometre Array will enable precision synoptic monitoring studies of hundreds of thousands of sources with a cadence of days or less. Statistics of variability, in particular concurrent observations at multiple radio frequencies and in other bands of the electromagnetic spectrum, will probe accretion physics over a wide range of AGN classes, luminosities, and orientations, as well as enabling a detailed understanding of the structures responsible for radio wave scattering in the Galactic interstellar medium.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Strong evidence exists for a highly significant correlation between the radio flux density and gamma-ray energy flux in blazars revealed by Fermi. However, there are central issues that need to be clarified in this field: what are the counterparts of the about 30% of gamma-ray sources that are as yet unidentified? Are they just blazars in disguise or they are something more exotic, possibly associated with dark matter? How would they fit in the radio-gamma ray connection studied so far? With their superb sensitivity, SKA1-MID and SKA1-SUR will help to resolve all of these questions. Even more, while the radio-MeV/GeV connection has been firmly established, a radio-VHE connection has been entirely elusive so far. The advent of CTA in the next few years and the expected CTA-SKA1 synergy will offer the chance to explore this connection, even more intriguing as it involves the opposite ends of the electromagnetic spectrum and the acceleration of particles up to the highest energies. We are already preparing to address these questions by exploiting data from the various SKA pathfinders and precursors. We have obtained 18 cm European VLBI Network observations of E>10 GeV sources, with a detection rate of 83%. Moreover, we are cross correlating the Fermi catalogs with the MWA commissioning survey: when faint gamma-ray sources are considered, pure positional coincidence is not significant enough for selecting counterparts and we need an additional physical criterion to pinpoint the right object. It can be radio spectral index, variability, polarization, or compactness, needing high angular resolution in SKA1-MID; timing studies can also reveal pulsars, which are often found from dedicated searches of unidentified gamma-ray sources. SKA will be the ideal instrument for investigating these characteristics in conjunction with CTA. (abridged)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adding VLBI capability to the SKA arrays will greatly broaden the science of the SKA, and is feasible within the current specifications. SKA-VLBI can be initially implemented by providing phased-array outputs for SKA1-MID and SKA1-SUR and using these extremely sensitive stations with other radio telescopes, and in SKA2 by realising a distributed configuration providing baselines up to thousands of km, merging it with existing VLBI networks. The motivation for and the possible realization of SKA-VLBI is described in this paper.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Micro-arcsecond Scintillation-Induced Variability (MASIV) Survey and its follow-up observations have provided large datasets of AGN intra-day variability (IDV) at radio wavelengths. These data have shown that IDV arises mainly from scintillation caused by scattering in the ionized interstellar medium (ISM) of our Galaxy, based on correlation with Galactic latitudes and line-of-sight Galactic electron column densities. The sensitivity of interstellar scintillation (ISS) towards source angular sizes has provided a new tool for studying the most compact components of radio-loud AGNs at microarcsecond (μas) scale resolution - much higher than any ground-based radio interferometer. We present here key results from the MASIV Survey and its follow-up observations, and point to relevant papers where these results have been published.
    Proceedings of the International Astronomical Union 10/2014; 9(S304):415-416. DOI:10.1017/S1743921314004463
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interstellar scintillation (ISS) has been shown to be primarily responsible for the short term intraday variability (IDV) exhibited by extragalactic sources at centimeter wavelengths (e.g. Bignall et al. 2006 and references therein). For a source to scintillate its angular size must be comparable to that of the first Fresnel zone (Narayan 1992) which implies microarcsecond angular sizes for screen distances of tens to hundreds of parsecs. This has the potential to probe within a few light months of the central black hole (Bignall et al. 2006). The aim of the Microarcsecond Scintillation-Induced Variability (MASIV) survey was to provide a catalogue of at least a hundred AGNs that vary on timescales of hours to days to provide the basis of detailed studies of the IDV population drawn from a well-defined sample.
    Proceedings of the International Astronomical Union 10/2014; 9(S304):110-111. DOI:10.1017/S1743921314003500
  • [Show abstract] [Hide abstract]
    ABSTRACT: The AuScope geodetic Very Long Baseline Interferometry array consists of three new 12-m radio telescopes and a correlation facility in Australia. The telescopes at Hobart (Tasmania), Katherine (Northern Territory) and Yarragadee (Western Australia) are co-located with other space geodetic techniques including Global Navigation Satellite Systems (GNSS) and gravity infrastructure, and in the case of Yarragadee, satellite laser ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) facilities. The correlation facility is based in Perth (Western Australia). This new facility will make significant contributions to improving the densification of the International Celestial Reference Frame in the Southern Hemisphere, and subsequently enhance the International Terrestrial Reference Frame through the ability to detect and mitigate systematic error. This, combined with the simultaneous densification of the GNSS network across Australia, will enable the improved measurement of intraplate deformation across the Australian tectonic plate. In this paper, we present a description of this new infrastructure and present some initial results, including telescope performance measurements and positions of the telescopes in the International Terrestrial Reference Frame. We show that this array is already capable of achieving centimetre precision over typical long-baselines and that network and reference source systematic effects must be further improved to reach the ambitious goals of VLBI2010.
    Journal of Geodesy 06/2013; 87(6). DOI:10.1007/s00190-013-0626-3 · 3.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe a new tool for studying the structure and physical characteristics of ultracompact active galactic nucleus (AGN) jets and their surroundings with μas precision. This tool is based on the frequency dependence of the light curves observed for intra-day variable radio sources, where the variability is caused by interstellar scintillation. We apply this method to PKS 1257-326 to resolve the core-shift as a function of frequency on scales well below ~12 μas. We find that the frequency dependence of the position of the scintillating component is rν–0.1 ± 0.24 (99% confidence interval) and the frequency dependence of the size of the scintillating component is dν–0.64 ± 0.006. Together, these results imply that the jet opening angle increases with distance along the jet: with nd > 1.8. We show that the flaring of the jet, and flat frequency dependence of the core position is broadly consistent with a model in which the jet is hydrostatically confined and traversing a steep pressure gradient in the confining medium with and np 7. Such steep pressure gradients have previously been suggested based on very long baseline interferometry studies of the frequency dependent core shifts in AGNs.
    The Astrophysical Journal 02/2013; 765(2):142. DOI:10.1088/0004-637X/765/2/142 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intraday variability (IDV) of the radio emission from active galactic nuclei is now known to be predominantly due to interstellar scintillation (ISS). The MASIV (The Micro-Arcsecond Scintillation-Induced Variability) survey of 443 flat spectrum sources revealed that the IDV is related to the radio flux density and redshift. A study of the physical properties of these sources has been severely handicapped by the absence of reliable redshift measurements for many of these objects. This paper presents 79 new redshifts and a critical evaluation of 233 redshifts obtained from the literature. We classify spectroscopic identifications based on emission line properties, finding that 78% of the sources have broad emission lines and are mainly FSRQs. About 16% are weak lined objects, chiefly BL Lacs, and the remaining 6% are narrow line objects. The gross properties (redshift, spectroscopic class) of the MASIV sample are similar to those of other blazar surveys. However, the extreme compactness implied by ISS favors FSRQs and BL Lacs in the MASIV sample as these are the most compact object classes. We confirm that the level of IDV depends on the 5\,GHz flux density for all optical spectral types. We find that BL Lac objects tend to be more variable than broad line quasars. The level of ISS decreases substantially above a redshift of about two. The decrease is found to be generally consistent with ISS expected for beamed emission from a jet that is limited to a fixed maximum brightness temperature in the source rest frame.
    The Astrophysical Journal 02/2013; 767(1). DOI:10.1088/0004-637X/767/1/14 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have used the broadband backend available at the ATCA to study the fast interstellar scintillation of quasar PKS 1257-326, resolving the core shift as a function of frequency on scales less than 10 microarcseconds. In this short paper we discuss the jet direction implied from the microarcsecond-scale core shift in PKS 1257-326.
    Proceedings of the International Astronomical Union 01/2013; 10(S313). DOI:10.1017/S1743921315002082
  • Source
    Artem V. Tuntsov, Hayley E. Bignall, Mark A. Walker
    [Show abstract] [Hide abstract]
    ABSTRACT: The interstellar scattering responsible for pulsar parabolic arcs, and for intra-day variability of compact radio quasars, is highly anisotropic in some cases. We numerically simulate these observed phenomena using totally anisotropic, power-law models for the electron density fluctuations which cause the scattering. By comparing our results to the scattered image of PSR B0834+06 and, independently, to dual-frequency light curves of the quasar PKS1257-326, we constrain the nature of the scattering media on these lines of sight. We find that models with spectral indices slightly below \beta=3, including the one-dimensional Kolmogorov model, are broadly consistent with both data sets. We confirm that a single physical model suffices for both sources, with the scattering medium simply being more distant in the case of B0834+06. This reinforces the idea that intra-day variability and parabolic arcs have a common cause in a type of interstellar structure which, though obscure, is commonplace. However, the implied gas pressure fluctuations are large compared to typical interstellar pressures, and the magnetic stresses are much larger still. Thus while these scattering media may be commonplace, their underlying dynamics appear quite extraordinary.
    Monthly Notices of the Royal Astronomical Society 12/2012; 429(3). DOI:10.1093/mnras/sts527 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Australian Square Kilometre Array Pathfinder (ASKAP) will give us an unprecedented opportunity to investigate the transient sky at radio wavelengths. In this paper we present VAST, an ASKAP survey for Variables and Slow Transients. VAST will exploit the wide-field survey capabilities of ASKAP to enable the discovery and investigation of variable and transient phenomena from the local to the cosmological, including flare stars, intermittent pulsars, X-ray binaries, magnetars, extreme scattering events, interstellar scintillation, radio supernovae and orphan afterglows of gamma ray bursts. In addition, it will allow us to probe unexplored regions of parameter space where new classes of transient sources may be detected. In this paper we review the known radio transient and variable populations and the current results from blind radio surveys. We outline a comprehensive program based on a multi-tiered survey strategy to characterise the radio transient sky through detection and monitoring of transient and variable sources on the ASKAP imaging timescales of five seconds and greater. We also present an analysis of the expected source populations that we will be able to detect with VAST.
    Publications of the Astronomical Society of Australia 07/2012; 30. DOI:10.1017/pasa.2012.006 · 2.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fraction of compact active galactic nuclei (AGNs) that exhibit interstellar scintillation (ISS) at radio wavelengths, as well as their scintillation amplitudes, have been found to decrease significantly for sources at redshifts z > 2. This can be attributed to an increase in the angular sizes of the \muas-scale cores or a decrease in the flux densities of the compact \muas cores relative to that of the mas-scale components with increasing redshift, possibly arising from (1) the space-time curvature of an expanding Universe, (2) AGN evolution, (3) source selection biases, (4) scatter broadening in the ionized intergalactic medium (IGM) and intervening galaxies, or (5) gravitational lensing. We examine the frequency scaling of this redshift dependence of ISS to determine its origin, using data from a dual-frequency survey of ISS of 128 sources at 0 < z < 4. We present a novel method of analysis which accounts for selection effects in the source sample. We determine that the redshift dependence of ISS is partially linked to the steepening of source spectral indices ({\alpha}^8.4_4.9) with redshift, caused either by selection biases or AGN evolution, coupled with weaker ISS in the {\alpha}^8.4_4.9 < -0.4 sources. Selecting only the -0.4 < {\alpha}^8.4_4.9 < 0.4 sources, we find that the redshift dependence of ISS is still significant, but is not significantly steeper than the expected (1+z)^0.5 scaling of source angular sizes due to cosmological expansion for a brightness temperature and flux-limited sample of sources. We find no significant evidence for scatter broadening in the IGM, ruling it out as the main cause of the redshift dependence of ISS. We obtain an upper limit to IGM scatter broadening of < 110\muas at 4.9 GHz with 99% confidence for all lines of sight, and as low as < 8\muas for sight-lines to the most compact, \sim 10\muas sources.
    The Astrophysical Journal 06/2012; 756(1). DOI:10.1088/0004-637X/756/1/29 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery that interstellar scintillation (ISS) is suppressed for compact radio sources at z >~ 2 has enabled ISS surveys to be used as cosmological probes. We discuss briefly the potential and challenges involved in such an undertaking, based on a dual-frequency survey of ISS carried out to determine the origin of this redshift dependence.
    Proceedings of the International Astronomical Union 04/2012; 7(S285):347-348. DOI:10.1017/S1743921312001020
  • Source
    Hayley E. Bignall, Jeffrey A. Hodgson
    [Show abstract] [Hide abstract]
    ABSTRACT: The line of sight towards the compact, radio loud quasar PKS 1257-326 passes through a patch of scattering plasma in the local Galactic ISM that causes large and rapid, intra-hour variations in the received flux density at centimetre wavelengths. This rapid interstellar scintillation (SS) has been occurring for at least 15 years, implying that the scattering ``screen'' is at least 100 AU in physical extent. Through observations of the ISS we have measured microarcsecond-scale ``core shifts'' in PKS 1257-326, corresponding to changing opacity during an intrinsic outburst. Recent analysis of VLA data of a sample of 128 quasars found 6 sources scintillating with a characteristic time-scale of < 2 hours, suggesting that nearby scattering screens in the ISM may have a covering fraction of a few percent. That is an important consideration for proposed surveys of the transient and variable radio sky.
    Proceedings of the International Astronomical Union 04/2012; 7(S285):129-132. DOI:10.1017/S1743921312000439
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Preliminary specifications for the Square Kilometre Array (SKA) call for 25% of the total collecting area of the dish array to be located at distances greater than 180 km from the core, with a maximum baseline of at least 3000 km. The array will provide angular resolution ~ 40 - 2 mas at 0.5 - 10 GHz with image sensitivity reaching < 50 nJy/beam in an 8 hour integration with 500 MHz bandwidth. Given these specifications, the high angular resolution component of the SKA will be capable of detecting brightness temperatures < 200 K with milliarcsecond-scale angular resolution. The aim of this article is to bring together in one place a discussion of the broad range of new and important high angular resolution science that will be enabled by the SKA, and in doing so, address the merits of long baselines as part of the SKA. We highlight the fact that high angular resolution requiring baselines greater than 1000 km provides a rich science case with projects from many areas of astrophysics, including important contributions to key SKA science.
    Publications of the Astronomical Society of Australia 11/2011; 29(1). DOI:10.1071/AS11050 · 2.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The extreme, intra-hour and >10% rms flux density scintillation observed in AGNs such as PKS 0405-385, J1819+3845 and PKS 1257-326 at cm wavelengths has been attributed to scattering in highly turbulent, nearby regions in the interstellar medium. Such behavior has been found to be rare. We searched for rapid scintillators among 128 flat spectrum AGNs and analyzed their properties to determine the origin of such rapid and large amplitude radio scintillation. The sources were observed at the VLA at 4.9 and 8.4 GHz simultaneously at two hour intervals over 11 days. We detected six rapid scintillators with characteristic time-scales of 10%. We found strong lines of evidence linking rapid scintillation to the presence of nearby scattering regions, estimated to be
    Astronomy and Astrophysics 10/2011; 534. DOI:10.1051/0004-6361/201117805 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the discovery that the flux densities of very compact astrophysical sources are modulated by scattering in the inhomogeneous, ionized interstellar medium (ISM) of our own Galaxy through a phenomenon known as Interstellar Scintillation (ISS), these scattering effects have been used with great success as a tool to probe the physics of the ISM and the sources themselves. With the recent discovery of a redshift dependence in the ISS of quasars in a 4.9 GHz survey of about 500 sources, large statistical studies of ISS have been imbued with a cosmological significance. Possible causes of this effect include cosmological expansion, scatter broadening by the ionized intergalactic medium and evolution of quasar morphology with redshift. Since each of these hypotheses have different wavelength dependences, we have carried out dual-frequency observations of a subsample of 140 quasars to determine the origin of this redshift dependence of ISS. We are therefore using interstellar scattering, for the first time, as a cosmological probe at micro-arcsecond scales - achieving an angular resolution two orders of magnitude finer than that of Very Long Baseline Interferometry (VLBI). We discover a weaker redshift dependence at 8.4 GHz as compared to 4.9 GHz, indicating a strong wavelength scaling in the effect. We are investigating possible source selection effects and developing the theory to model the observations to enable an accurate interpretation of the data.
    General Assembly and Scientific Symposium, 2011 XXXth URSI; 09/2011

Publication Stats

433 Citations
132.60 Total Impact Points

Institutions

  • 2013
    • Universiti Tunku Abdul Rahman
      Kuala Lumpor, Kuala Lumpur, Malaysia
  • 2010–2013
    • Curtin University Australia
      • International Centre for Radio Astronomy Research (ICRAR)
      Bentley, Western Australia, Australia
    • International Centre for Radio Astronomy Research
      Perth City, Western Australia, Australia
  • 2011–2012
    • Curtin University
      Bentley, Western Australia, Australia
  • 2004–2009
    • Joint Institute for VLBI in Europe
      Hoogeveen, Drenthe, Netherlands
  • 2008
    • California Institute of Technology
      • Department of Astronomy
      Pasadena, California, United States
  • 2006
    • University of Tasmania
      • School of Mathematics & Physics
      Hobart Town, Tasmania, Australia
    • National Radio Astronomy Observatory
      Charlottesville, Virginia, United States
  • 2001–2003
    • University of Adelaide
      Tarndarnya, South Australia, Australia