Wei-De Shen

Suzhou University, Suchow, Anhui Sheng, China

Are you Wei-De Shen?

Claim your profile

Publications (22)56.1 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: β-N-acetylglucosaminidase (GlcNAcase) is a key enzyme in the chitin decomposition process. In this study, we investigated the gene expression profile of GlcNAcases and the regulation mechanism for one of these genes, BmGlcNAcase1, in the silkworm. We performed sequence analysis of GlcNAcase. Using dual-spike-in qPCR method, we examined the expression of Bombyx β-N-acetylglucosaminidases (BmGlcNAcases) in various tissues of silkworm as well as expression changes after stimulation with ecdysone. Using Bac-to-Bac system and luciferase reporter vectors, we further analyzed the promoter sequence of BmGlcNAcase1. The results showed that these proteins have a highly conserved catalytic domain. The expression levels of the BmGlcNAcase genes varied in different tissues, and were increased 48 h after exposure to ecdysone. BmGlcNAcase1 gene promoter with 5'-end serial deletions showed different levels of activity in various tissues, higher in the blood, skin and fat body. Deletion of the region from -347 to -223 upstream of BmGlcNAcase-1 gene abolished its promoter activity. This region contains the binding sites for key transcription factors including Hb, BR-C Z, the HSF and the typical TATA-box element. These results indicate that BmGlcNAcases are expressed at different levels in different tissues of the silkworm, but all are subjected to the regulation by ecdysone. BmGlcNAcase1 promoter analysis has paved a foundation for further study of the gene expression patterns.
    Molecular Biology Reports 07/2014; · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It was predicted that the genome of silkworm, Bombyx mori, has at least 79 P450 genes; however, P450 genes that are related to the catabolism of exogenous compounds were not reported. In this study we cloned two CYP4 (named CPY4M5 and CYP4M9) and four CYP6 (named CYP6AB5, CYP6AE9, CYP6AE22 and CYP6AU1) genes by using both bioinformatics and RT-PCR approaches. Sequence analysis showed that these genes contained conserved P450 gene sequence regions and one conserved intron. CYP4M5 and CYP4M9 genes were clustered together in a mode of "head-to-tail" possibly due to gene duplication. Blast analysis showed that these P450 genes shared significant similarity with CYP4 and CYP6 genes that are involved in the catabolism and detoxification of exogenous compounds in other insect species. RT-PCR results showed that these P450 genes were highly expressed in the midgut and fat body of B. mori. As the instar age increased, these P450 genes exhibit different expression patterns. When B. mori was exposed to 1.75 × 10(-5 )% of cypermethrin, 3.5 × 10(-6 )% of cypermethrin and 0.1 % of rutin, expression of CYP6AB5 was increased by 2.3-fold, 2.2-fold and 1.9-fold, respectively. Exposure of B. mori to 0.1 % quercetin does not change the expression of CYP6AB5. In contrast, expression of the other five P450 genes was inhibited after exposed to these compounds.
    Molecular Biology Reports 05/2014; · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carboxylesterase (CarE) is a multifunctional superfamily, and it plays important roles in xenobiotic detoxification, pheromone degradation, neurogenesis and regulating development. In this research, firstly, we measured the rutin-induced transcriptional level of BmCarE-10 gene by using real-time quantitative RT-PCR method, and dual spike-in strategy. Several possible physiological functions were certified preliminarily by RNAi experiments in silkworm. Promoter truncation analysis using a dual-luciferase reporter assay in Bombyx mori ovary cells (BmN) showed that the region -705 to -625 for BmCarE-10 gene was essential for basal and rutin-induced transcriptional activity. Sequence analysis of this region revealed several potential transcriptional regulatory elements such as Croc and Dfd. The activities of the BmCarE-10 promoter in various tissues of silkworm were also measured by firefly luciferase activity and normalized by the Renilla luciferase activity. Results showed that the activity of the BmCarE-10 promoter were highest in the Malpighian tubule, followed by fat body, silk gland, midgut, epidermis, and hemocyte. The essential region for basal and rutin-induced transcriptional activity was also -894 to -502 in Malpighian tubule and fat body of silkworm. The potential core promoters of BmCarE-10 gene in B. mori are reported for the first time in this research. Further identification of cis- and trans-elements and their role in upregulation of BmCarE-10 gene may be useful for elucidating the contribution of CarE protein to the response mechanism to rutin.
    Molecular Biology Reports 01/2014; · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The acetylcholinesterase of Lepidoptera insects is encoded by two genes, ace1 and ace2. The expression of the ace1 gene is significantly higher than that of the ace2 gene, and mutations in ace1 are one of the major reasons for pesticide resistance in insects. In order to investigate the effects of the mutations in ace1's characteristic sites on pesticide resistance, we generated mutations for three amino acids using site-directed mutagenesis, which were Ala(GCG)303Ser(TCG), Gly(GGA)329Ala(GCA) and Leu (TCT)554Ser(TTC). The Baculovirus expression system was used for the eukaryotic expression of the wild type ace1 (wace1) and the mutant ace1 (mace1). SDS-PAGE and Western blotting were used to detect the targeting proteins with expected sizeof about 76 kDa. The expression products were purified for the determination of AChE activity and the inhibitory effects of physostigmine and phoxim. We observed no significant differences in the overall activity of the wild type and mutant AChEs. However, with 10 min of physostigmine (10 μM) inhibition, the remaining activity of the wild type AChE was significantly lower than that of the mutant AChE. Ten min inhibition with 33.4 μM phoxim also resulted in significantly lower remaining activity of the wild type AChE than that of the mutant AChE. These results indicated that mutations for the three amino acids reduced the sensitivity of AChE to physostigmine and phoxim, which laid the foundation for future in vivo studies on AChE's roles in pesticide resistance.
    Molecular Biology Reports 12/2013; · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytochrome P450s (CYPs) are widespread proteins that interact with exogenous chemicals from the diet or the environment. CYP9A subfamily genes are important in the silkworm Bombyx mori. We previously reported transcriptional levels of two CYP9A genes in different tissues and their responses to sodium fluoride (NaF). In this study, promoter truncation analysis using a dual-luciferase reporter assay in B. mori ovary cells (BmN) showed that the regions -1,496 to -1,102 bp for CYP9A19, and -1,630 to -1,210 bp for CYP9A22 were essential for basal transcriptional activity. Sequence analysis of these regions revealed several transcriptional regulatory elements but no typical promoter elements. Promoter activities were regulated after NaF induction and with an obvious dose effect. Although the dual-luciferase assay has been widely used to determine the activity of a given promoter in cell lines, problems with it still exist. Our results indicate that both plasmid size and construct protocols affect the experimental results.
    Molecular Biology Reports 10/2012; · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The first complete mitochondrial genome (mitogenome) of Tachinidae Exorista sorbillans (Diptera) is sequenced by PCR-based approach. The circular mitogenome is 14,960 bp long and has the representative mitochondrial gene (mt gene) organization and order of Diptera. All protein-coding sequences are initiated with ATN codon; however, the only exception is Cox I gene, which has a 4-bp ATCG putative start codon. Ten of the thirteen protein-coding genes have a complete termination codon (TAA), but the rest are seated on the H strand with incomplete codons. The mitogenome of E. sorbillans is biased toward A+T content at 78.4 %, and the strand-specific bias is in reflection of the third codon positions of mt genes, and their T/C ratios as strand indictor are higher on the H strand more than those on the L strand pointing at any strain of seven Diptera flies. The length of the A+T-rich region of E. sorbillans is 106 bp, including a tandem triple copies of a13-bp fragment. Compared to Haematobia irritans, E. sorbillans holds distant relationship with Drosophila. Phylogenetic topologies based on the amino acid sequences, supporting that E. sorbillans (Tachinidae) is clustered with strains of Calliphoridae and Oestridae, and superfamily Oestroidea are polyphyletic groups with Muscidae in a clade.
    Molecular Biology Reports 10/2012; · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytochrome P450 (CYP) is a multifunctional super gene family, some of which play an important role in pesticide resistance. In this research, we used a real-time quantitative RT-PCR method, and a novel strategy, to measure the transcriptional level per gene copy using an exogenous RNA reference and DNA reference. The transcription levels of eight P450 genes in different tissues of fifth instar Bombyx mori larvae and their responses to pesticides (dichlorvos and deltamethrin) and sodium fluoride (NaF) were investigated. The results show different levels and patterns of expression of the different P450s in the various tissues observed. The P450s can be induced by pesticide and fluoride, but their responses to each are different. The results of this research are helpful in studying the tissue-specific expression of P450s in B. mori, and in developing new pesticide resistant silkworm varieties.
    Pesticide Biochemistry and Physiology - PESTIC BIOCHEM PHYSIOL. 01/2011; 100(3):251-255.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glutathione S-transferases (GSTs) are a multifunctional super gene family, some of which play an important role in insecticide resistance. In this research, we used a real-time quantitative RT-PCR method, and a novel strategy, to measure the transcriptional level per gene copy using an exogenous RNA reference and DNA reference. The transcription levels of six BmGST genes in different tissues of fifth instar Bombyx mori larvae and their responses to insecticide and fluoride were investigated. The results show different levels and patterns of expression of the different BmGSTs in the various tissues observed. The BmGSTs can be induced by insecticide and fluoride, but their responses to each are different. The results of this research are helpful in studying the tissue-specific expression of BmGSTs in Bombyx mori, and in developing new pesticide resistant silkworm varieties.
    Molecular Biology Reports 12/2010; 38(8):4855-61. · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Bombyx mandarina nucleopolyhedrovirus (BomaNPV) S1 strain can infect the silkworm, Bombyx mori, but is significantly less virulent than B. mori nucleopolyhedrovirus (BmNPV) T3 strain. The complete nucleotide sequence of the S1 strain of BomaNPV was determined and compared with the BmNPV T3 strain. The circular, double stranded DNA genome of the S1 strain was 126,770 nucleotides long (GenBank accession no. FJ882854), with a G+C content of 40.23%. The genome contained 133 potential ORFs. Most of the putative proteins were more than 96% identical to homologs in the BmNPV T3 strain, except for bro-a, lef-12, bro-c, and bro-d. Compared with the BmNPV T3 strain, however, this genome did not encode the bro-b and bro-e genes. In addition, hr1 lacked two repeat units, while hr2L, hr2R, hr3, hr4L, hr4R, and hr5 were similar to the corresponding hrs in the T3 strain. The sequence strongly suggested that BomaNPV and BmNPV are variants with each other, and supported the idea that baculovirus strain heterogeneity may often be caused by variation in the hrs and bro genes.
    The Journal of Microbiology 02/2010; 48(1):102-10. · 1.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bombyx mori nucleopolyhedrovirus (BmNPV) orf4 has been shown to be expressed at very early stage of Bm-NPV infection cycle. In this study, using transient expression experiment, we demonstrated for the first time that orf4 promoter is an immediate early promoter, indicating that orf4 may play a role in the immediate-early stage of BmNPV infection. Moreover, with the recently developed Bac-to-Bac/BmNPV baculovirus expression system and a modified pFast-Bac1 whose polyhedrin promoter was replaced with orf4 promoter, a recombinant bacmid baculovirus expressing enhanced green fluorescent protein (EGFP) under the control of orf4 promoter in Bombyx mori (Bm) cells was successfully constructed. The result not only showed that the polyhedrin promoter can be replaced easily with other promoters to direct the expression of foreign genes by using this novel system but also laid the foundation for the rescue experiment of orf4 deletion mutant.
    Biologia 03/2009; 64(2):383-387. · 0.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Baculoviruses are well known for their potential as biological agents for controlling agricultural and forest pests. They are also widely used as expression vectors in molecular cloning studies. The genome sequences of 48 baculoviruses are currently available in NCBI databases. As the number of sequenced viral genomes increases, it is important for the authors to present sufficiently detailed analyses and annotations to advance understanding of them. In this study, the complete genome of Clanis bilineata nucleopolyhedrovirus (ClbiNPV) has been sequenced and analyzed in order to understand this virus better. The genome of ClbiNPV contains 135,454 base pairs (bp) with a G+C content of 37%, and 139 putative open reading frames (ORFs) of at least 150 nucleotides. One hundred and twenty-six of these ORFs have homologues with other baculovirus genes while the other 13 are unique to ClbiNPV. The 30 baculovirus core genes are all present in ClbiNPV. Phylogenetic analysis based on the combined pif-2 and lef-8 sequences places ClbiNPV in the Group II Alphabaculoviruses. This result is consistent with the absence of gp64 from the ClbiNPV genome and the presence instead of a fusion protein gene, characteristic of Group II. Blast searches revealed that ClbiNPV encodes a photolyase-like gene sequence, which has a 1-bp deletion when compared with photolyases of other baculoviruses. This deletion disrupts the sequence into two small photolyase ORFs, designated Clbiphr-1 and Clbiphr-2, which correspond to the CPD-DNA photolyase and FAD-binding domains of photolyases, respectively. ClbiNPV belongs to the Group II Alphabaculoviruses and is most closely related to OrleNPV, LdMNPV, TnSNPV, EcobNPV and ChchNPV. It contains a variant DNA photolyase gene, which only exists in ChchNPV, TnSNPV and SpltGV among the baculoviruses.
    BMC Genomics 03/2009; 10:91. · 4.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we studied the feasibility of deleting essential genes in insect cells by using bacmid and purifying recombinant bacmid in Escherichia coli DH10B cells. To disrupt the orf4 (open reading frame 4) gene of BmNPV [Bm (Bombyx mori) nuclear polyhedrosis virus], a transfer vector was constructed and co-transfected with BmNPV bacmid into Bm cells. Three passages of viruses were carried out in Bm cells, followed by one round of purification. Subsequently, bacmid DNA was extracted and transformed into competent DH10B cells. A colony harbouring only orf4-disrupted bacmid DNA was identified by PCR. A mixture of recombinant (white colonies) and non-recombinant (blue colonies) bacmids were also transformed into DH10B cells. PCR with M13 primers showed that the recombinant and non-recombinant bacmids were separated after transformation. The result confirmed that purification of recombinant viruses could be carried out simply by transformation and indicated that this method could be used to delete essential genes. Orf4-disrupted bacmid DNA was extracted and transfected into Bm cells. Viable viruses were produced, showing that orf4 was not an essential gene.
    Bioscience Reports 09/2008; 29(2):71-5. · 1.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: GP64 homologies, which are found in Group I NPVs, and F proteins (Fa proteins), which are utilized in Group II NPVs, are required for virion entry into the cell. And Group I NPV also encodes homologue of Fa protein, and was named Fb protein. However, Fb protein dose not appear to mediate cell fusion. To further researching these important viral envelope proteins, the expression of GP64 and Fb proteins in Group I NPVs were studied by Real-time quantitative PCR. The results indicated that Fb is not the evolution redundancy gene but an important function gene. In addition, we transfected the fragments of CbNPV Fa and ie-1 into different insect cell lines, and found that CbNPV Fa and ie-1 could not express in BmN and T.ni High Five cells but could express in Sf-9 and Spli cells.
    Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference on; 06/2008
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diapause eggs of Bombyx mandarina Moore from Wujiang, Jiangsu Province, China, were used to study the artificial hatching of B. mandarina Moore. The results showed that the highest hatchability was obtained by instant treatment with hydrochloric acid (HCl, specific gravity 1.065–1.075) for 5 min under 46°C. After the B. mandarina eggs were cold stored at 5°C for 40 days, the highest hatchability was obtained by treatment with HCl (specific gravity 1.092) for 6 minutes under 47.8°C. For the B. mandarina eggs that were stored at 25°C for 28 d and men cold-stored at 5°C for 0–100 days, the highest hatchability was obtained by treatment with HCl (specific gravity 1.092) for 6 min at 47.8°C. The longer the cold storage period, the higher was the hatchability. Acid treatment on diapause eggs of B. mandarina for 6 mins at 47.8°C with hydrochloric acid (specific gravity 1.092) before hatching in spring could obviously shorten the hatching stage and increase the hatchability.
    Agricultural Sciences in China - AGRIC SCI CHINA. 01/2008; 7(4):502-506.
  • [Show abstract] [Hide abstract]
    ABSTRACT: When Silk fibre derived from Bombyx mori, a native biopolymer, was dissolved in highly concentrated neutral salts such as CaCl2, the regenerated liquid silk, a gradually degraded peptide mixture of silk fibroin, could be obtained. The silk fibroin nanoparticles were prepared rapidly from the liquid silk by using water-miscible protonic and polar aprotonic organic solvents. The nanoparticles are insoluble but well dispersed and stable in aqueous solution and are globular particles with a range of 35–125nm in diameter by means of TEM, SEM, AFM and laser sizer. Over one half of the ɛ-amino groups exist around the protein nanoparticles by using a trinitrobenzenesulfonic acid (TNBS) method. Raman spectra shows the tyrosine residues on the surface of the globules are more exposed than those on native silk fibers. The crystalline polymorph and conformation transition of the silk nanoparticles from random-coil and α-helix form (Silk I) into anti-parallel β-sheet form (Silk II) are investigated in detail by using infrared, fluorescence and Raman spectroscopy, DSC, 13C CP-MAS NMR and electron diffraction. X-ray diffraction of the silk nanoparticles shows that the nanoparticles crystallinity is about four fifths of the native fiber. Our results indicate that the degraded peptide chains of the regenerated silk is gathered homogeneously or heterogeneously to form a looser globular structure in aqueous solution. When introduced into excessive organic solvent, the looser globules of the liquid silk are rapidly dispersed and simultaneously dehydrated internally and externally, resulting in the further chain–chain contact, arrangement of those hydrophobic domains inside the globules and final formation of crystalline silk nanoparticles with β-sheet configuration. The morphology and size of the nanoparticles are relative to the kinds, properties and even molecular structures of organic solvents, and more significantly to the looser globular substructure of the degraded silk fibroin in aqueous solution. It is possible that the silk protein nanoparticles are potentially useful in biomaterials such as cosmetics, anti-UV skincare products, industrial materials and surface improving materials, especially in enzyme/drug delivery system as vehicle.
    Journal of Nanoparticle Research 01/2007; 9(5):885-900. · 2.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The regenerated liquid silk fibroin with an average molecular mass of about 60 kDa consists of 18 kinds of amino acids containing approximately 10% of polar amino acids with hydroxyl and amino groups such as serine and lysine. The liquid silk fibroin is coupled covalently with insulin molecules through these strongly polar side groups by using glutaraldehyde. The physicochemical properties of the silk fibroin-insulin (SF-Ins) bioconjugates were investigated by enzyme-linked immunosorbent assay for the quantitative measurement of insulin. The biological activities of the insulin bioconjugates were characterized in vitro and in vivo. The SF-Ins constructs obtained by 5 h of covalent crosslinking showed much higher recovery (about 70%) and in vitro stability in human serum than bovine serum albumin-insulin (BSA-Ins) derivatives. The results in human serum indicated that the half-life in vitro of the biosynthesized SF-Ins derivatives was 2.1 and 1.7 times more than that of BSA-Ins conjugates and native insulin, respectively. The immunogenicity of the regenerated silk fibroin and the antigenicity of silk fibroin-modified insulin were not observed in both rabbits and rats. The pharmacological activity of the SF-Ins bioconjugates in diabetic rats evidently lengthened and was about 3.5 times as long as that of the native insulin, nearly 21 h. The bioconjugation of insulin with the regenerated silk fibroin greatly improved its physicochemical and biological stability.
    Journal of Biomedical Materials Research Part B Applied Biomaterials 12/2006; 79(2):275-83. · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: When silk fiber derived from Bombyx mori was subjected to degumming treatments twice in water and subsequent degraded processing in slightly alkaline aqueous solution under high-temperature and high-pressure, the water-soluble silk sericin peptides (SS) with different molecular mass from 10 to 70 kDa were obtained. The sericin peptides could be conjugated covalently with insulin alone with cross-linking reagent glutaraldehyde. The physicochemical properties of the silk sericin-insulin (SS-Ins) conjugates were determined by Enzyme-Linked Immunosorbent Assay (ELISA). The biological activities of SS-Ins bioconjugates were investigated in vitro and in vivo. The results in human serum in vitro indicated that the half-life of the synthesized SS-Ins derivatives was 2.3 and 2.7 times more than that of bovine serum albumin-insulin (BSA-Ins) conjugates and intact insulin, respectively. The pharmacological activity of SS-Ins bioconjugates lengthened to 21 h in mice in vivo, which was over 4 times longer than that of the native insulin. The immunogenicity of silk sericin and the antigenicity of SS-Ins derivatives were not observed in both rabbits and mice. The bioconjugation of insulin with silk sericin protein evidently improved both physicochemical and biological stability of the polypeptide.
    Journal of Controlled Release 11/2006; 115(3):307-15. · 7.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: L-asparaginase (ASNase) is one basic drug in the treatment of acute lymphoblastic leukemia (ALL). Because its half-life time is too short and it is easy to arouse allergic reaction, use in practical clinic is considerably limited. Silk fibroin (SF) with different molecular mass from 40 to 120 kDa is a natural biocompatible protein and could be used as a novel bioconjugate for enzyme modification to overcome its usual shortcomings mentioned above. When the enzyme was bioconjugated covalently with the water-soluble fibroin by glutaraldehyde, the enzyme kinetic properties and immune characteristics in vivo of the resulting silk fibroin-L-asparaginase (SF-ASNase) bioconjugates were investigated in detail. The results show that the modified ASNase was characterized by its higher residual activity (nearly 80%), increased heat and storage stability and resistance to trypsin digestion, and its longer half-life (63 h) than that of intact ASNase (33 h). The abilities of intact and modified ASNases to arouse allergic reaction are 2(4) and 2(1) antibody titers, respectively. Bioconjugation of silk fibroin significantly helps to reduce the immunogenicity and antigenicity of the enzyme. The apparent Michaelis constants of the modified ASNase (K(m(app))=0.844 x 10(-3)mol L(-1)) was approximately six times lower than that of enzyme alone, which suggests that the affinity of the enzyme to substrate l-asparagine elevated when bioconjugated covalently with silk fibroin. SF-ASNase bioconjugates could overcome the common shortcomings of the native form. Therefore, the modified ASNase coupled with silk fibroin has the potential values of being studied and developed as a new bioconjugate drug.
    Journal of Biotechnology 12/2005; 120(3):315-26. · 3.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The natural silk sericin, recovered from Bombyx mori silk waste by degumming and degrading, is a water-soluble peptide with different molecular masses, ranging from 20 to 60 kDa. It is composed of 15 sorts of amino acids, among which the polar amino acids with hydroxyl, carboxyl and amino groups such as aspartic acid, serine and lysine account for 72%. The covalent attachment of the silk sericin peptides to L-asparaginase (ASNase) produces silk sericin peptides–L-asparaginase (SS–ASNase) bioconjugates that are active, stable, have a lower immune response, and have extended half-lives in vitro in human serum. The modified enzyme coupled with sericin protein retains 55.8% of the original activity of the native enzyme. The optimal pH of SS–ASNase derivatives shifts considerably, to 5.0 in comparison with pH 6.0–8.0 of the native form. The thermostability and resistance to trypsin digestion of the modified enzyme are greatly enhanced as compared with ASNase alone. The Michaelis constant (Km) of SS–ASNase is 65 times lower than that of the enzyme alone. This suggests that the affinity of the enzyme to its substrate L-asparagine greatly increases when bioconjugated with silk sericin. The in vivo experiments also show that the silk sericin peptides have no immunogenicity, and the antigenicity of the enzyme is obviously decreased when coupled covalently with the silk sericin peptides. Copyright © 2005 Society of Chemical Industry
    Journal of Chemical Technology & Biotechnology 09/2005; 81(2):136 - 145. · 2.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The natural silk sericin recovered from Bombyx mori silk waste by the degumming processing in the high-temperature and high-pressure is a macromolecular protein. Amino acid composition and molecular weight range of the sericin protein as a vector for enzyme immobilization were investigated. The silk sericin protein with different molecular mass from 50 to 200 kDa was poorly soluble microparticles with an average size of about 10 microm. Anti-leukemic enzyme L-asparaginase (L-ASNase) was covalently conjugated on the microparticles of the sericin protein. The immobilized L-ASNase on the natural support by cross-linking with glutaraldehyde maintained 62.5% of the original activity of the enzyme. The Km of sericin-conjugates was 8 times lower than that of native L-ASNase. The bioconjugation of L-ASNase widened the optimum reactive temperature range of the enzyme. The immobilized L-ASNase showed significantly higher stability when the temperature raised to 40-50 degrees C, it also showed preferable resistance to trypsin digestion as compared with native enzyme. The results are discussed regarding the possible explanations of sericin-induced enzyme stability, as well as the possible applications of immobilized L-ASNase research.
    Biomaterials 09/2004; 25(17):3751-9. · 8.31 Impact Factor

Publication Stats

156 Citations
56.10 Total Impact Points

Institutions

  • 2010
    • Suzhou University
      • Life Sciences School
      Suchow, Anhui Sheng, China
  • 2007–2010
    • Soochow University (PRC)
      Wu-hsien, Jiangsu Sheng, China
  • 2008–2009
    • Jiangsu University
      • Institute of Life Sciences
      Zhenjiang, Jiangsu Sheng, China