Anamaria Rauh

Medical University of Graz, Graz, Styria, Austria

Are you Anamaria Rauh?

Claim your profile

Publications (3)11.58 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Lysophosphatidic acid (LPA), a naturally occurring bioactive phospholipid, mediates a multitude of (patho)physiological events including activation of mitogen-activated protein kinases (MAPKs). As LPA may induce cellular reponses in human osteosarcoma, the present study aimed at investigating expression of various LPA receptors, LPA-mediated activation of MAPK via G-protein coupling, and expression of early response genes in a cellular model for human osteosarcoma. We show that MG-63 cells express three members of the endothelial differentiation gene (Edg) family of G-protein coupled receptor transcripts (LPA(1-3)) but only two (LPA(4/5)) out of three members of the non-Edg family LPA receptor transcripts. Stimulation of MG-63 cells with LPA or synthetic LPA receptor agonists resulted in p42/44 MAPK phosphorylation via LPA(1)-LPA(3) receptors. Using pharmacological inhibitors, we show that LPA-mediated phosphorylation of p42/44 MAPK by LPA receptor engagement is transmitted by G(αi)-dependent pathways through the Src family of tyrosine kinases. As a consequence, a rapid and transient upregulation of the zinc finger transcription factor early growth response-1 (Egr-1) was observed. Egr-1 expression was strictly mediated via G(αi)/Src/p42/44 MAPK pathway; no involvement of the G(αq/11)/PLC/PKC or the PLD/PI3 kinase/Akt pathways was found. LPA-induced expression of functional Egr-1 in MG-63 cells could be confirmed by electrophoretic mobility shift assay. LPA-induced Egr-1 upregulation was accompanied by a time-dependent decrease of periostin (previously called osteoblast-specific factor 2), a cell adhesion protein for pre-osteoblasts. Silencing of LPA(1) and/or Egr-1 in MG-63 cells reversed LPA-mediated suppression of periostin. We here demonstrate a crosslink between Egr-1 and periostin in cancer cells, in particular in human osteosarcoma.
    Biochimie 05/2012; 94(9):1997-2005. · 3.14 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Modification/chlorination of high-density lipoprotein (HDL) by hypochlorous acid (HOCl), formed by the myeloperoxidase-H₂O₂-chloride system of activated phagocytes, converts an anti-atherogenic lipoprotein into a pro-inflammatory lipoprotein particle. Chlorinated HDL is present in human lesion material, binds to and is internalized by endothelial cells and impairs expression and activity of endothelial nitric oxide synthase. The present study aimed at clarifying whether exposure of endothelial cells to pro-inflammatory HOCl-HDL impacts on expression of heme oxygenase-1, a potential rescue pathway against endothelial dysfunction. Our findings revealed that HDL modified by HOCl, added as reagent or generated enzymatically, induced phosphorylation of p42/44 mitogen-activated protein kinase, expression of transcription factor early growth response-1 (Egr-1) and enhanced expression of heme oxygenase-1 in human endothelial cells. Upregulation of heme oxygenase-1 could be blocked by an inhibitor upstream of p42/44 mitogen-activated protein kinase and/or knockdown of Egr-1 by RNA-interference. Electrophoretic mobility shift assays demonstrated HOCl-HDL-mediated induction of the Egr-1 DNA binding activity. Immunocytochemical and immunoblotting experiments demonstrated HOCl-HDL-induced translocation of Egr-1 to the nucleus. The present study demonstrates a novel compensatory pathway against adverse effects of HOCl-HDL, providing cytoprotection in a number of pathological conditions including cardiovascular disease.
    Archives of Biochemistry and Biophysics 02/2011; 509(1):16-25. · 3.37 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Background and purpose: Endothelins (ETs) and their G protein-coupled receptors exert key physiological functions during normal and aberrant placental development. Trophoblast cells mediate the contact between the embryo and the mother, by establishing a transient organ, the placenta. Choriocarcinoma cells display many of the biochemical and morphological characteristics of in utero invasive trophoblast cells and may therefore be used as a suitable model to study epithelial tumour progression of foetal-derived cells.Experimental approach: The present study aimed at investigating ET receptor-mediated activation of the mitogen-activated protein kinase (MAPK) pathway in human choriocarcinoma.Key results: Both JAR and Jeg-3 choriocarcinoma cell lines expressed ET receptor subtype B (ETB) but not ETA receptor transcripts. ETB receptor engagement by ET-1 and ET-3 resulted in a similar time- and concentration-dependent phosphorylation of p42/44 MAPK, also known as extracellular regulated kinase 1/2. Using specific pharmacological antagonists/inhibitors, we showed that ET-1/-3-mediated signal transduction by the ETB receptor is transmitted via Gi- and Gq-dependent pathways through activation of the Src (Gi) and protein kinase C (Gq) axis that converge at Ras/Raf, leading to downstream activation of p42/44. On a functional level, ETB engagement and subsequent phosphorylation of p42/44 resulted in enhanced transcription of the immediate early response genes c-fos and c-jun, a process commonly assumed to be mediated by the ETA receptor, and increased cell growth and relative cell area.Conclusions and implications: As human choriocarcinoma cells secrete ETs, pharmacological antagonism of ETs and/or ETB receptor-mediated signal transduction could represent a likely target therapy for choriocarcinoma.
    British Journal of Pharmacology 01/2009; 154(1):13 - 24. · 5.07 Impact Factor