Are you Nasser Amirizadeh?

Claim your profile

Publications (2)3.94 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Factor VII (FVII) is a plasma glycoprotein that participates in the coagulation process leading to the generation of fibrin. The aim of this study was to construct, express and purify recombinant FVII fused to a polyhistidine (his) tag using Gateway technology. To construct the entry clone, blunt-end FVII cDNA and subsequent polymerase chain reaction (PCR) product isolated from a HepG2 cell line was TOPO-cloned into a pENTR TOPO vector. To construct the expression clone, a LR recombination reaction was carried out between the entry clone and destination vector, pDEST26. Chinese hamster ovary (CHO) cells were transfected with 1 microg of DNA of PDEST26-FVII using the FuGENE HD transfection reagent. Two cell lines that permanently expressed recombinant FVII were established. The expression of recombinant FVII was confirmed by reverse transcriptase PCR and enzyme-linked immunosorbent assay. Culture medium containing his-tagged FVII was added to the nickel-nitrilotriacetic acid resin column and bound protein was eluted. The purified protein was detected by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis. The biological activity of the recombinant FVII was determined by a prothrombin time assay using FVII-depleted plasma. The results showed that human recombinant FVII was successfully cloned and the accuracy of the nucleotide sequence of the gene and its frame in the vector were confirmed by DNA sequencing. Stable clones transfected with the construct expressed FVII mRNA and related protein but no expression was detected in the CHO cells containing an empty vector. A protein of about 52 KDa was detected in SDS-PAGE and was further confirmed by western blot analysis. A three-fold decrease in clotting time was observed using this recombinant FVII. As far as we are aware, this is the first report of expression of recombinant FVII fused with a his-tag through Gateway technology. The next steps, including large scale expression, purification, activation and stabilisation, are underway.
    Blood transfusion = Trasfusione del sangue 10/2009; 7(4):305-12. · 1.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the major consequences in beta- thalassemia is iron overload. Oxidative statuses have been reported in beta-thalassemia patients by several studies. It has been proven that iron plays a critical role in the formation of reactive oxygen species (ROS). More recently, we have found the induction of Lcn2/NGAL expression under oxidative stress condition. In this study, it was assumed that NGAL should be upregulated in beta-thalassemia patients because of oxidative stress condition. Assessment of NGAL expressions in 25 adult beta-thalassemia and 9 pediatric patients was performed by semiquantitative RT-PCR, real-time RT-PCR and ELISA. Adult beta-thalassemia patients upregulated NGAL expression compared with the normal samples but no upregulation was observed in pediatric patients. Upregulation may play an important role in decreasing ROS or iron in beta-thalassemia patients.
    Archives of Medical Research 06/2008; 39(4):402-7. · 2.08 Impact Factor