Gustavo Palacios

Stony Brook University, Stony Brook, NY, United States

Are you Gustavo Palacios?

Claim your profile

Publications (9)69.34 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Mice engineered to express c-Myc in B cells (Emu-myc mice) develop lethal lymphomas in which the gene encoding the p53 tumor suppressor is frequently mutated. Whether the p53 homolog p73 also functions as a tumor suppressor in vivo remains controversial. Here we have shown that p73 loss does not substantially affect disease onset and mortality in Emu-myc mice. However, it does alter the phenotype of the disease. Specifically, p73 loss decreased nodal disease and increased widespread extranodal dissemination. We further found that p53 acted as the dominant tumor suppressor during the onset of Emu-myc-driven B cell lymphomagenesis, while p73 modulated tumor dissemination and extranodal growth. Immunophenotyping and expression profiling suggested that p73 loss allowed increased maturation of malignant B cells and deregulated genes involved in lymphocyte homing and dissemination of human lymphomas. Consistent with this, p73 expression was frequently downregulated in a large cohort of human mature aggressive B cell lymphomas, and both the incidence and degree of p73 downregulation in these tumors correlated with their extranodal dissemination status. These data indicate that p73 is a modifier of Myc-driven lymphomas in mice, favoring tumor dissemination, and suggest that p73 could be a biomarker for human B cell lymphoma dissemination, a notion that can now be tested in clinicopathologic correlation studies.
    The Journal of clinical investigation 06/2010; 120(6):2070-80. · 15.39 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: p63, an ancestral transcription factor of the p53 family, has three C-terminal isoforms whose relative in vivo functions are elusive. The p63 gene is essential for skin and limb development, as vividly shown by two independent global knockout mouse models. Both strains, although constructed differently, have identical and severe phenotypes, characterized by absent epidermis and hindlimbs and only rudimentary forelimbs at birth. Here we show that mice from one model, Brdm2, express normal levels of truncated p63 proteins that contain the DNA binding and oligomerization domain but lack the long carboxy-terminal SAM (sterile alpha-motif) and post-SAM domains that are specific for the alpha and beta isoforms. As such, transcriptionally active p63 proteins from Brdm2 mice resemble the naturally occurring p63gamma isoforms, which of all the p63 isoforms most closely resemble p53. Thus, Brdm2 mice are p63alpha/beta isoform-specific knockout mice, gaining unexpected new importance. Our studies identify that p63alpha/beta but not p63gamma are absolutely required for proper skin and limb development.
    Cell death and differentiation 04/2009; 16(8):1108-17. · 8.24 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Transcriptional silencing of the p73 gene through methylation has been demonstrated in human leukemias and lymphomas. However, the role of p73 in the malignant process remains to be explored. We show here that p73 acts as a T cell-specific tumor suppressor in a genetically defined mouse model, and that concomitant ablation of p53 and p73 predisposes mice to an increased incidence of thymic lymphomas compared to the loss of p53 alone. Our results demonstrate a causal role for loss of p73 in progression of T cell lymphomas to the stage of aggressive, disseminated disease. We provide evidence that tumorigenesis in mice lacking p53 and p73 proceeds through mechanisms involving altered patterns of gene expression, defects in early T cell development, impaired apoptosis, and the ensuing accumulation of chromosomal aberrations. Collectively, our data imply that tumor suppressive properties of p73 are highly dependent on cellular context, wherein p73 plays a major role in T cell development and neoplasia.
    PLoS ONE 01/2009; 4(11):e7784. · 3.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Classic but also novel roles of p53 are becoming increasingly well characterized. We previously showed that ex vivo retroviral transfer of mitochondrially targeted wild type p53 (mitop53) in the Emu-myc mouse lymphoma model efficiently induces tumor cell killing in vivo. In an effort to further explore the therapeutic potential of mitop53 for its pro-apoptotic effect in solid tumors, we generated replication-deficient recombinant human Adenovirus type 5 vectors. We show here that adenoviral delivery of mitop53 by intratumoral injection into HCT116 human colon carcinoma xenograft tumors in nude mice is surprisingly effective, resulting in tumor cell death of comparable potency to conventional p53. These apoptotic effects in vivo were confirmed by Ad5-mitop53 mediated cell death of HCT116 cells in culture. Together, these data provide encouragement to further explore the potential for novel mitop53 proteins in cancer therapy to execute the shortest known circuitry of p53 death signaling.
    Cell cycle (Georgetown, Tex.) 09/2008; 7(16):2584-90. · 5.24 Impact Factor
  • Source
    Sonja Wolff, Susan Erster, Gustavo Palacios, Ute M Moll
    [show abstract] [hide abstract]
    ABSTRACT: p53's apoptotic program consists of transcription-dependent and transcription-independent pathways. In the latter, physical interactions between mitochondrial p53 and anti- and pro-apoptotic members of the Bcl2 family of mitochondrial permeability regulators are central. Using isogenic cell systems with defined deficiencies, we characterize in detail how mitochondrial p53 contributes to mitochondrial permeabilization, to what extent its action depends on other key Bcl2 family members and define its release activity. We show that mitochondrial p53 is highly efficient in inducing the release of soluble and insoluble apoptogenic factors by severely disrupting outer and inner mitochondrial membrane integrity. This action is associated with wild-type p53-induced oligomerization of Bax, Bak and VDAC and the formation of a stress-induced endogenous complex between p53 and cyclophilin D, normally located at the inner membrane. Tumor-derived p53 mutants are deficient in activating the Bax/Bak lipid pore. These actions are independent of Puma and Bax. Importantly, the latter distinguishes the mitochondrial from the cytosolic p53 death pathway.
    Cell Research 08/2008; 18(7):733-44. · 10.53 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The protease HAUSP is a critical component of the p53-Mdm2 pathway and acts as a specific deubiquitinase for both p53 and Mdm2 and thus is important for p53 regulation. In knock-down and knock-out cellular systems it was observed that ablation of HAUSP induces profound stabilization of p53 due to enhanced degradation of Mdm2. Thus, inhibiting HAUSP by small compound interference has been proposed as a rational therapeutic strategy to activate p53 in p53 wild type tumors. However, HAUSP-mediated effects in the p53-Mdm2 axis are highly complex and non-linear and to date the role of HAUSP in tumor suppression in vivo remains unexplored. Here we investigate the effect of HAUSP up and downregulation on cell proliferation, apoptosis and tumor growth in vitro and in a xenograft model in vivo, using an inducible isogenic human colon carcinoma cell system. Importantly, in the absence of stress, both HAUSP up and downregulation inhibit cell proliferation in vitro and tumor growth in vivo due to constitutively elevated p53 levels. Moreover, tumors with HAUSP up and downregulation respond to radiotherapy with further growth inhibition. However, HAUSP downregulation causes resistance to Camptothecin- and irradiation-induced apoptosis, which correlates with suppressed mitochondrial translocation of p53. Our data suggest that changes in HAUSP modulate tumor growth and apoptotic sensitivity in vivo.
    Cell cycle (Georgetown, Tex.) 06/2008; 7(9):1205-13. · 5.24 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: To better understand the role of E2F1 in tumor formation, we analyzed spontaneous tumorigenesis in p53(-/-)E2F1(+/+) and p53(-/-)E2F1(-/-) mice. We show that the combined loss of p53 and E2F1 leads to an increased incidence of sarcomas and carcinomas compared to the loss of p53 alone. E2F1-deficient tumors show wide chromosomal variation, indicative of genomic instability. Consistent with this, p53(-/-)E2F1(-/-) primary fibroblasts have a reduced capacity to maintain genomic stability when exposed to S-phase inhibitors or genotoxic drugs. A major mechanism of E2F1's contribution to genomic integrity lies in mediating stabilization and engagement of the Rb protein.
    Cell cycle (Georgetown, Tex.) 04/2008; 7(12):1776-81. · 5.24 Impact Factor
  • Source
    G Palacios, U M Moll
    [show abstract] [hide abstract]
    ABSTRACT: The complex apoptotic functions of the p53 tumor suppressor are central to its antineoplastic activity in vivo. Besides its well-known action as a transcriptional activator of apoptotic genes, p53 exerts a direct proapoptotic role at the mitochondria via protein-protein interactions with Bcl2 family members, thus executing the shortest known circuitry of p53 death signaling. We recently reported that exclusive delivery of p53 to mitochondria exerts a significant in vivo tumor suppressor activity in p53-null lymphomas. However, it was unknown whether mitochondrially targeted p53 has suppressor activities in tumors harboring missense mutants, which constitute the vast majority of p53 alterations in human tumors. Here, we show that targeting p53 to mitochondria does confer a significant growth disadvantage in B-lymphomas expressing various point mutants of p53, resulting in efficient apoptosis induction in vitro and in vivo in mice.
    Oncogene 11/2006; 25(45):6133-9. · 7.36 Impact Factor
  • Source
    Cell Death and Differentiation 02/2006; 13(1):170-3. · 8.37 Impact Factor

Publication Stats

123 Citations
69.34 Total Impact Points


  • 2006–2010
    • Stony Brook University
      • Department of Pathology
      Stony Brook, NY, United States
  • 2009
    • Universitätsmedizin Göttingen
      • Department of Molecular Oncology
      Göttingen, Lower Saxony, Germany
    • Albert Einstein College of Medicine
      New York City, New York, United States