Johannes M Hoogduin

University Medical Center Utrecht, Utrecht, Utrecht, Netherlands

Are you Johannes M Hoogduin?

Claim your profile

Publications (34)124.93 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Renal denervation (RDN) is a promising therapy for resistant hypertension. RDN is assumed to decrease sympathetic activity. Consequently, RDN can potentially increase renal oxygenation. Blood oxygen level-dependent MRI (BOLD-MRI) provides a non-invasive tool to determine renal oxygenation in humans. The aim of the current study was to investigate the effect of RDN on renal oxygenation as determined by BOLD-MRI. Patients with resistant hypertension or the inability to follow a stable drug regimen due to unacceptable side effects were included. BOLD-MRI was performed before and 12 months after RDN. Twenty-seven patients were imaged on 3 T and 19 on 1.5 T clinical MRI systems. Fifty-four patients were included, 46 patients (23 men, mean age 57 years) completed the study. Mean 24-h BP changed from 163(±20)/98(±14) mmHg to 154(±22)/92(±13) mmHg (p = 0.001 and p < 0.001). eGFR did not change after RDN [77(±18) vs. 79(±20) mL/min/1.73 m(2) ; p = 0.13]. RDN did not affect renal oxygenation [1.5 T: cortical R2*: 12.5(±0.9) vs. 12.5(±0.9), p = 0.94; medullary R2*: 19.6(±1.7) vs. 19.3(1.4), p = 0.40; 3 T: cortical R2*: 18.1(±0.8) vs. 17.8(±1.2), p = 0.47; medullary R2*: 27.4(±1.9) vs. 26.7(±1.8), p = 0.19]. The current study shows that RDN does not lead to changes in renal oxygenation 1 year after RDN as determined by BOLD-MRI. • Renal denervation significantly decreased ambulatory blood pressure. • Renal denervation did not change renal oxygenation as determined by BOLD-MRI. • Absence of a change in renal oxygenation might be explained by autoregulation.
    European Radiology 01/2015; DOI:10.1007/s00330-014-3583-1 · 4.34 Impact Factor
  • Source
    Nephrology Dialysis Transplantation 05/2014; 29 Suppl 3:iii79-iii89. DOI:10.1093/ndt/gfu142 · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our objective was to explore the value of additional MR contrasts in elucidating the decrease in fractional anisotropy (FA) as has been observed in the corticospinal tracts (CST) of patients with amyotrophic lateral sclerosis (ALS). Eleven patients and nine healthy control subjects were scanned at 3T and 7T MRI. Whole brain and tract specific comparison was performed of both diffusion weighted (3T), quantitative T1 (qT1), magnetization transfer ratio (MTR) and amide proton transfer weighted (APTw) imaging (7T). Results of whole brain comparison using histogram analyses showed no significant differences between patients and controls. Measures along the CST showed a significantly reduced FA together with a significantly increased diffusivity perpendicular to the tract direction in patients compared to controls. In addition, patients showed a small but significant increase in MTR values within the right CST. No significant changes were observed in qT1 and APTw values. In conclusion, our findings, based on a multimodal approach, revealed that the decrease in FA is most probably caused by an increased diffusivity perpendicular to the CST. This diffusivity profile, together with the increase in MTR is inconsistent with demyelination but consistent with an increase of free liquid spins in the white matter tissue.
    12/2013; 15(1-2). DOI:10.3109/21678421.2013.844168
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study is to assess the geometric accuracy of diffusion weighted (DW)-MRI by quantification of geometric distortions in the gross tumor volume (GTV) in head and neck (HN) cancer. A retrospective analysis was performed on the data of 23 patients (with 24 lesions). For these patients, magnetic field maps and DW-MRI were acquired. The magnetic field maps were converted to voxel displacement maps. GTV delineations were transferred onto these voxel displacement maps and the voxel shifts in the GTV were analyzed. The median shift was 3.2mm and the maximal posterior and anterior shifts were up to 15.0 and 26.0mm respectively. The range of shifts varied from 11.8 to 25.6mm. The percentage of GTV voxels that showed a shift of at least 6mm was found to be 23.2%. Current DW-MRI images of HN tumors show severe distortions up to centimeters, which restrict the use of DW-MRI scans for GTV definition in RT treatment planning.
    Radiotherapy and Oncology 10/2013; DOI:10.1016/j.radonc.2013.10.004 · 4.86 Impact Factor
  • Daniel Louis Polders, Johannes Marinus Hoogduin
    PET Clinics 07/2013; 8(3):245–257. DOI:10.1016/j.cpet.2013.04.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: To assess the relationship between performance on the Paced Auditory Serial Addition Test (PASAT) and both cerebral blood flow (CBF) and axonal metabolic integrity in normal appearing white matter (NAWM) of the centrum semiovale in patients with multiple sclerosis (MS). METHODS: Normal appearing white matter of the centrum semiovale was investigated with magnetic resonance (MR) imaging in 28 non-depressed individuals (18 patients with MS and 10 healthy controls). CBF was assessed with pseudo-continuous arterial spin labeling. N-acetylacetate/creatine (NAA/Cr) ratios (a metabolic axonal marker) were measured using (1) H-MR spectroscopy. CBF was also measured in frontoparietal cortices and cerebellar hemispheres. RESULTS: In subjects with MS, we found a positive correlation between performance on the PASAT and CBF to the left centrum semiovale (P = 0.008), but not with the NAA/Cr ratio. There were no correlations between PASAT scores and CBF to the right centrum semiovale, frontoparietal cortices, and cerebellar hemispheres. There was no correlation between PASAT scores and NAA/Cr ratios. CONCLUSIONS: Our preliminary results suggest that performance on the PASAT in subjects with MS correlates with CBF to the left centrum semiovale, which contains left frontoparietal white matter association tracts involved in information processing speed and working memory.
    Acta Neurologica Scandinavica 04/2013; DOI:10.1111/ane.12129 · 2.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Cerebral blood flow (CBF) is reduced in normal-appearing white matter (NAWM) of subjects with multiple sclerosis (MS), but the underlying mechanism is unknown. OBJECTIVE: The objective of this article is to assess the relationship between reduced NAWM CBF and both axonal mitochondrial metabolism and astrocytic phosphocreatine (PCr) metabolism. METHODS: Ten healthy controls and 25 MS subjects were studied with 3 Tesla magnetic resonance imaging. CBF was measured using pseudo-continuous arterial spin labeling. N-acetylaspartate/creatine (NAA/Cr) ratios (axonal mitochondrial metabolism) were obtained using (1)H-MR spectroscopy and PCr/β-ATP ratios using (31)P-MR spectroscopy. In centrum semiovale NAWM, we assessed correlations between CBF and both NAA/Cr and PCr/β-ATP ratios. RESULTS: Subjects with MS had a widespread reduction in CBF of NAWM (centrum semiovale, periventricular, frontal and occipital), and gray matter (frontoparietal cortex and thalamus). Compared to controls, NAA/Cr in NAWM of the centrum semiovale of MS subjects was decreased, whereas PCr/β-ATP was increased. We found no correlations between CBF and PCr/β-ATP. CBF and NAA/Cr correlated in controls (p = 0.02), but not in MS subjects (p = 0.68). CONCLUSIONS: Our results suggest that in MS patients there is no relationship between reduced CBF in NAWM and impaired axonal mitochondrial metabolism or astrocytic PCr metabolism.
    Multiple Sclerosis 02/2013; 19(10). DOI:10.1177/1352458513477228 · 4.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pathophysiology of tremor generation remains uncertain in 'familial cortical myoclonic tremor with epilepsy' (FCMTE) and essential tremor (ET). In both disorders, imaging and pathological studies suggest involvement of the cerebellum and its projection areas. MR diffusion tensor imaging allows estimation of white matter tissue composition, and therefore is well suited to quantify structural changes in vivo. This study aimed to compare cerebellar fiber density between FCMTE and ET patients and healthy controls. Seven FCMTE patients, eight ET patients, and five healthy controls were studied. Cerebellum was annotated based on fractional anisotropy (FA) and mean diffusivity volumes. Mean cerebellar FA values were computed as well as mean cerebellar volume. Group statistics included one-way ANOVAs and post hoc independent t tests. Mean FA of the cerebellar region for FCMTE was 0.242 (SD = 0.012), for ET 0.259 (SD = 0.0115), and for controls 0.262 (SD = 0.0146). There was a significant group effect for FA (F(2) = 4.9, p = 0.02). No difference in mean cerebellar volume was found. Post hoc independent t tests revealed significantly decreased mean FA in FCMTE patients compared to controls (t[10] = 2.5, p = 0.03) and ET patients (t[13] = 2.9, p = 0.01), while there was no difference in mean FA between ET patients and controls (t[11] < 1.0). This study indicates for the first time microstructural damage of the cerebellar white matter in FCMTE in vivo. These results ascertain a role of the cerebellum in 'cortical tremor'.
    The Cerebellum 09/2012; DOI:10.1007/s12311-012-0414-2 · 2.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vivo MRS of the human brain at ultrahigh field allows for the identification of a large number of metabolites at higher spatial resolutions than currently possible in clinical practice. However, the in vivo localization of single-voxel spectroscopy has been shown to be challenging at ultrahigh field because of the low bandwidth of refocusing radiofrequency (RF) pulses. Thus far, the proposed methods for localized MRS at 7 T suffer from long TE, inherent signal loss and/or a large chemical shift displacement artifact that causes a spatial displacement between resonances, and results in a decreased efficiency in editing sequences. In this work, we show that, by driving a standard volume coil with two RF amplifiers, focusing the B 1+ field in a certain location and using high-bandwidth adiabatic refocusing pulses, a semi-LASER (semi-localized by adiabatic selective refocusing) localization is feasible at short TE in the human brain with full signal acquisition and a low chemical shift displacement artifact at 7 T.
    NMR in Biomedicine 11/2011; 24(9):1038-46. DOI:10.1002/nbm.1641 · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The underlying pathology of lacunar infarcts, white matter lesions and also of microbleeds is poorly understood. We assessed whether the presence of lacunar infarcts, white matter lesions or microbleeds on MRI was associated with a decrease in cerebrovascular reactivity, and assessed whether this association was similar for lacunar infarcts, white matter lesions and microbleeds. BOLD-fMRI scan with breath-holding at 7 T and anatomical scans at 1.5 T were available in 49 patients with atherosclerotic disease from the Second Manifestations of ARTerial disease (SMART) study. Microbleeds and lacunar infarcts were scored visually and volumetric assessment of white matter lesions was performed on the 1.5 T scan. The percentage of voxels with a significant signal change on breath-holding and the whole brain signal change were calculated as measures of cerebrovascular reactivity. The mean percentage of voxels with a significant signal change was 25.1% (SD 6.6) and the mean percentage whole brain signal change was 1.20% (SD 0.51). Age, gender, and diastolic blood pressure were significantly associated with cerebrovascular reactivity. Cerebrovascular reactivity was lower with increasing age, lower in females compared to males and lower with lower diastolic blood pressure. ANCOVA showed that patients with microbleeds (n=18) had a significantly lower whole brain signal change than patients without microbleeds, with a mean difference of -0.36% (95% CI -0.64 to 0.07), independent of age, sex, systolic and diastolic blood pressure and non-lacunar infarcts. No significant associations were found for presence of lacunar infarcts or white matter lesion volume with whole brain signal change or percentage of voxels with a significant signal change. The results show that presence of microbleeds is associated with an impaired cerebrovascular reactivity in patients with atherosclerotic disease, whereas no significant association was found for the presence of lacunar infarcts or white matter lesions in our study.
    NeuroImage 09/2011; 59(2):950-6. DOI:10.1016/j.neuroimage.2011.08.059 · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the association of 7-T magnetic resonance (MR) imaging characteristics with metastatic nodal invasion, determined with histopathologic assessment in dissected sentinel lymph nodes of breast cancer patients. Institutional review board approval and informed consent were obtained. From November 2008 to July 2010, 114 dissected lymph nodes from 33 women (mean age, 57 years; range, 31-80 years) with breast cancer were included. For morphological analysis, three-dimensional (3D) T1-weighted fat-suppressed fast field- (gradient-) echo (isotropic resolution, 180 μm) MR was performed; 3D nodal dimensions, maximum cortical thickness, and presence of fatty hilum were noted. For quantitative parametric analysis, two-dimensional T1-weighted and 3D T2-, T2*-, and diffusion-weighted images were acquired. Statistical analysis included generalized estimating equations (GEEs), forward and backward stepwise regression analyses, and calculation of positive predictive value (PPV) and negative predictive value (NPV). Of 114 nodes, 26 (23%) were malignant. Morphological criteria showed weak discriminatory power: A fatty center was absent in 35% of malignant nodes and 30% of benign nodes (P = .9). Nodal volume and length-width ratio were not significantly different (P = .11 and .75, respectively). Cortical thickness (threshold level, 3 mm; P = .02) showed 91% NPV for malignancy and 95% NPV for presence of macrometastases. Quantitative parametric analyses showed comparable mean T1, T2, and T2* relaxation time constants and apparent diffusion coefficient for metastatic and benign nodes: 991 msec, 30 msec, and 18 msec and 0.17 mm²/sec versus 1035 msec (P = .14), 31 msec (P = .001; not significant after GEE), and 15 msec (P = .002) and 0.20 mm²/sec (P = .38), respectively. Mean T2* alone offered an additive discriminatory effect for identification of metastatic nodes. Consistent with the notion of pannodal changes accompanying tumor infiltration, mean T2* differed significantly even if only micrometastases were present. The interindividual differences were small, precluding easy clinical implementation. Morphological criteria showed poor discriminatory power, even with very-high-spatial-resolution imaging. T2* quantification allowed identification of metastatic nodal invasion.
    Radiology 06/2011; 261(1):127-35. DOI:10.1148/radiol.11103535 · 6.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To compare diffusion tensor imaging (DTI) measurements at ultra high field strength (7 Tesla [T]) in human volunteers with DTI measurements performed at 1.5 and 3 Tesla. The signal to noise ratio (SNR) and the uncertainty in fitted DTI parameters fractional anisotropy and primary eigenvector are assessed with tractography based regions of interest, measured in nine volunteers at 1.5T, 3T, and 7T with clinically available hardware configurations. An increase in SNR is observed on the 7T system compared with the 1.5 or 3T system. The measured increase in SNR at 7T is larger than expected from field strength alone, indicating the large influence of improved receive coil hardware. Additionally, while the average fractional anisotropy remains relatively constant across field strengths, a decrease in uncertainty in the fitted values for fractional anisotropy and the principal eigenvector of the DTI tensor was found. Increased spatial heterogeneity of signal intensities is observed at 7T. Given the current hardware constraints, DTI at ultra-high field strengths is possible with improved performance in selected regions of interest.
    Journal of Magnetic Resonance Imaging 06/2011; 33(6):1456-63. DOI:10.1002/jmri.22554 · 2.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several methods in signal processing had been implemented in magnetic resonance spectroscopy (MRS) post-processing step to obtain high-quality magnetic resonance (MR) spectra from multiple-voxel MR spectroscopic imaging. Data were acquired using Turbo Spectroscopic Imaging (TSI) with 3 echo-train length. Data post-processing steps involved spectroscopic data processing, unsuppressed-water reference data processing, and reference data correction into spectroscopic data to obtain the spectra with high resolution and signal-to-noise ratio (SNR).
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the drawbacks of scanning patients using multiple-voxel spectroscopic imaging is the long acquisition time. This is especially true when one is interested in obtaining absolute metabolite concentrations which requires acquisition of unsuppressed water spectra in addition to the suppressed spectra. In our experiment, turbo spectroscopic imaging (TSI) method with acquisition of three echoes per excitation was applied to reduce scanning time without lowering the spatial resolution. In 15 relapsing-remitting multiple sclerosis patients (mean age 37.07years, mean disease duration 7.67years), an MRSI scan at the level of centrum semiovale was obtained. The scan time was approximately 7min including the unsuppressed spectra. Tissue water was used as an internal concentration reference to obtain absolute metabolite concentrations of N-acetyl-aspartate (NAA), creatine (Cr), and choline (Cho). The peak areas were corrected for differences in transversal and longitudinal relaxation times and a water concentration of 55.5M was assumed. A three-dimensional high-resolution T 1 scan was acquired and used to segment tissue in gray matter (GM), white matter (WM), and cerebrospinal fluid using FSL’S FAST segmentation method (a software library of the automated segmentation tool by the Center of Functional MRI of the Brain, Oxford, UK). Finally, a regression analysis was employed to address the metabolite concentrations and ratios in GM and WM, respectively. Our study shows that the metabolite concentrations (NAA, Cho, Cr) and metabolite ratios (NAA/Cr and Cho/Cr) in GM and WM obtained using the methods discussed earlier are comparable to the results found in other studies of similar patient groups. It also shows that TSI method can be used to obtain the absolute metabolite ratios in a reasonable scan time.
    Applied Magnetic Resonance 10/2010; 39(3):251-260. DOI:10.1007/s00723-010-0153-9 · 1.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study is to develop a submillimeter volumetric (three-dimensional) fluid-attenuated inversion recovery sequence at 7T. Implementation of the fluid-attenuated inversion recovery sequence is difficult as increased T(1) weighting from prolonged T(1) constants at 7T dominate the desired T(2) contrast and yield suboptimal signal-to-noise ratio. Magnetization preparation was used to reduce T(1) weighting and improve the T(2) weighting. Also, practical challenges limit the implementation. Long refocusing trains with low flip angles were used to mitigate the specific absorption rate constraints. This resulted in a three-dimensional magnetization preparation fluid-attenuated inversion recovery sequence with 0.8 x 0.8 x 0.8 = 0.5 mm(3) resolution in a clinically acceptable scan time. The contrast-to-noise ratio between gray matter and white matter (contrast-to-noise ratio = signal-to-noise ratio [gray matter] - signal-to-noise ratio [white matter]) increased from 12 +/- 9 without magnetization preparation to 28 +/- 8 with magnetization preparation (n = 12). The signal-to-noise ratio increased for white matter by 13 +/- 6% and for gray matter by 48 +/- 15%. In conclusion, three-dimensional fluid-attenuated inversion recovery with high resolution and full brain coverage is feasible at 7T. Magnetization preparation reduces the T(1) weighting, thereby improving the T(2) weighted contrast and signal-to-noise ratio.
    Magnetic Resonance in Medicine 07/2010; 64(1):194-202. DOI:10.1002/mrm.22397 · 3.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two studies using (31)P-magnetic resonance spectroscopy (MRS) reported enhanced phosphocreatine (PCr) levels in normal appearing white matter (NAWM) of subjects with multiple sclerosis (MS), but this finding could not be properly explained. We performed (31)P-MRS and (1)H-MRS in the NAWM in 36 subjects, including 17 with progressive MS, 9 with benign MS, and 10 healthy controls. Compared to controls, PCr/beta-ATP and PCr/total (31)P ratios were significantly increased in subjects with progressive MS, but not with benign MS. There was no correlation between PCr ratios and the N-acetylaspartate/creatine ratio, suggesting that elevated PCr levels in NAWM were not secondary to axonal loss. In the central nervous system, PCr is degraded by creatine kinase B (CK-B), which in the white matter is confined to astrocytes. In homogenates of NAWM from 10 subjects with progressive MS and 10 controls without central nervous system disease, we measured CK-B levels with an ELISA, and measured its activity with an enzymatic assay kit. Compared to controls, both CK-B levels and activity were decreased in subjects with MS (22.41 versus 46.28 microg/ml; p = 0.0007, and 2.89 versus 7.76 U/l; p<0.0001). Our results suggest that PCr metabolism in the NAWM in MS is impaired due to decreased CK-B levels. Our findings raise the possibility that a defective PCr metabolism in astrocytes might contribute to the degeneration of oligodendrocytes and axons in MS.
    PLoS ONE 05/2010; 5(5):e10811. DOI:10.1371/journal.pone.0010811 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A method to reduce the acoustic noise generated by gradient systems in MRI has been recently proposed; such a method is based on the linear response theory. Since the physical cause of MRI acoustic noise is the time derivative of the gradient current, a common trapezoid current shape produces an acoustic gradient coil response mainly during the rising and falling edge. In the falling edge, the coil acoustic response presents a 180 degrees phase difference compared to the rising edge. Therefore, by varying the width of the trapezoid and keeping the ramps constant, it is possible to suppress one selected frequency and its higher harmonics. This value is matched to one of the prominent resonance frequencies of the gradient coil system. The idea of cancelling a single frequency is extended to a second frequency, using two successive trapezoid-shaped pulses presented at a selected interval. Overall sound pressure level reduction of 6 and 10 dB is found for the two trapezoid shapes and a single pulse shape, respectively. The acoustically optimized pulse shape proposed is additionally tested in a simulated echo planar imaging readout train, obtaining a sound pressure level reduction of 12 dB for the best case.
    Magnetic Resonance in Medicine 01/2010; 64(2):546-53. DOI:10.1002/mrm.22366 · 3.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study used arterial spin labeling (ASL) fMRI to measure brain perfusion in a group of healthy men under conditions that closely resembled customary sexual behavior. Serial perfusion measures for 30 min during two self-limited periods of partnered penis stimulation, and during post-stimulatory periods, revealed novel sexual activity-related cerebral blood flow (rCBF) changes, mainly in subcortical parts of the brain. Ventral pallidum rCBF was highest during the onset of penile erection, and lowest after the termination of penis stimulation. The perceived level of sexual arousal showed the strongest positive association with rCBF in the right basal forebrain. In addition, our results demonstrate that distinct subregions of the hypothalamus and cingulate cortex subserve opposite functions during human male sexual behavior. The lateral hypothalamus and anterior part of the middle cingulate cortex showed increased rCBF correlated with penile erection. By contrast, the anteroventral hypothalamus and subgenual anterior cingulate cortex exhibited rCBF changes correlated with penile detumescence after penile stimulation. Continuous rapid and high-resolution brain perfusion imaging during normal sexual activity has provided novel insights into the central mechanisms that control male sexual arousal.
    NeuroImage 12/2009; 50(1):208-16. DOI:10.1016/j.neuroimage.2009.12.034 · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate reproducibility of proton magnetic resonance spectroscopy ((1)H-MRS) to measure hepatic triglyceride content (HTGC). In 24 subjects, HTGC was evaluated using (1)H-MRS at 3.0 Tesla. We studied "between-weeks" reproducibility and reproducibility of (1)H-MRS in subjects with fatty liver. We also studied within liver variability and within day reproducibility. Reproducibility was assessed by coefficient of variation (CV), repeatability coefficient (RC), and intraclass correlation coefficient (ICC). The CV of between weeks reproducibility was 9.5%, with a RC of 1.3% HTGC (ICC 0.998). The CV in fatty livers was 4.1%, with a RC of 1.3% HTGC (ICC 0.997). Within day CV was 4.5%, with a RC of 0.4% HTGC (ICC 0.999). CV for within liver variability was 14.5%. Reproducibility of (1)H-MRS to measure HTGC for "between-weeks" measurements and in fatty livers is high, which is important for follow-up studies. Within liver variability displays a larger variation, meaning that liver fat is not equally distributed and during consecutive measurements the same voxel position should be used.
    Journal of Magnetic Resonance Imaging 08/2009; 30(2):444-8. DOI:10.1002/jmri.21837 · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To apply and validate the use of electromyogram (EMG) recorded during functional magnetic resonance imaging (fMRI) in patients with movement disorders, to directly relate involuntary movements to brain activity. Eight "familial cortical myoclonic tremor with epilepsy" (FCMTE) patients, with tremor-like cortical myoclonus and cerebellar Purkinje cell degeneration, and nine healthy controls performed hand posture and movement in an on/off fashion (block design). Superfluous movements were quantified as deviations in EMG power, positive and negative, with respect to the average EMG per session. This measure, "residual EMG" (r-EMG), was derived by Gram-Schmidt orthogonalization. Activation maps resulting from conventional block regressors and novel r-EMG regressors were compared. In healthy participants, the block posture regressor identified mainly cerebellar activity and some activity in other areas belonging to motor circuitry. In FCMTE patients, no cerebellar activity was seen with the block posture regressor, compatible with cerebellar Purkinje cell changes in FCMTE. EMG power showed little variation during posture in healthy controls. Therefore, the r-EMG regressor was almost constant and revealed no brain activity as expected. In contrast, in FCMTE patients the r-EMG posture regressor was highly variable due to continuous myoclonic jerks. It identified sensorimotor cortical areas, compatible with cortical hyperexcitability in FCMTE patients. Conventional block regressors can be used to identify neuronal circuitry associated with a specific motor task, whereas r-EMG regressors can help identify brain activation directly related to involuntary movements. Simultaneous EMG-fMRI is complementary to conventional fMRI and will facilitate studies of hyperkinetic movement disorders.
    Human Brain Mapping 12/2008; 29(12):1430-41. DOI:10.1002/hbm.20477 · 6.92 Impact Factor

Publication Stats

654 Citations
124.93 Total Impact Points


  • 2009–2013
    • University Medical Center Utrecht
      • • Department of Neurosurgery
      • • Department of Radiology
      Utrecht, Utrecht, Netherlands
  • 2006–2012
    • University of Groningen
      • NeuroImaging Center (NIC)
      Groningen, Groningen, Netherlands
  • 2006–2011
    • Universitair Medisch Centrum Groningen
      • Department of Neurology
      Groningen, Groningen, Netherlands