Diego Luis-Ravelo

Universidad de Navarra, Iruña, Navarre, Spain

Are you Diego Luis-Ravelo?

Claim your profile

Publications (15)87.61 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone metastasis represents one of the most deleterious clinical consequences arising in the context of many solid tumors. Severe osteolysis results from tumor cell colonization of the bone compartment, a process which entails reciprocal exchange of soluble signals between tumor cells and their osseous microenvironment. Recent evidence indicates that tumor-intrinsic miRNAs are pleiotropic regulators of gene expression. But they are also frequently released in exosome-like vesicles (ELV). Yet the functional relevance of the transference of tumor-derived ELV and their miRNA cargo to the extracellular milieu during osseous colonization is unknown. Comparative transcriptomic profiling using an in vivo murine model of bone metastasis identified a repressed miRNA signature associated with high prometastatic activity. Forced expression of single miRNAs identified miR-192 that markedly appeased osseous metastasis in vivo, as shown by X-ray, bioluminescence imaging and microCT scans. Histological examination of metastatic lesions revealed impaired tumor-induced angiogenesis in vivo, an effect that was associated in vitro with decreased hallmarks of angiogenesis. Isolation and characterization of ELV by flow cytometry, Western blot analysis, transmission electron microscopy and nanoparticle tracking analysis revealed the ELV cargo enrichment in miR-192. Consistent with these findings, fluorescent labeled miR-192-enriched-ELV showed the in vitro transfer and release of miR-192 in target endothelial cells and abrogation of the angiogenic program by repression of proangiogenic IL-8, ICAM and CXCL1. Moreover, in vivo infusion of fluorescent labeled ELV efficiently targeted cells of the osseous compartment. Furthermore, treatment with miR-192 enriched ELV in a model of in vivo bone metastasis pre-conditioned osseous milieu and impaired tumor-induced angiogenesis, thereby reducing the metastatic burden and tumor colonization. Changes in the miRNA-cargo content within ELV represent a novel mechanism heavily influencing bone metastatic colonization, which is most likely relevant in other target organs. Mechanistic mimicry of this phenomenon by synthetic nanoparticles could eventually emerge as a novel therapeutic approach.
    Molecular oncology 05/2014; DOI:10.1016/j.molonc.2014.01.012 · 6.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lung adenocarcinoma (ADC) is the most common lung cancer subtype and presents a high mortality rate. Clinical recurrence is often associated with the emergence of metastasis and treatment resistance. The purpose of this study was to identify genes with high prometastatic activity which could potentially account for treatment resistance. Global transcriptomic profiling was performed by robust microarray analysis in highly metastatic subpopulations. Extensive in vitro and in vivo functional studies were achieved by overexpression and by silencing gene expression. We identified the small GTPase RHOB as a gene that promotes early and late stages of metastasis in ADC. Gene silencing of RHOB prevented metastatic activity in a systemic murine model of bone metastasis. These effects were highly dependent on tumor-host interactions. Clinical analysis revealed a marked association between high RHOB levels and poor survival. Consistently, high RHOB levels promote metastasis progression, taxane-chemoresistance, and contribute to the survival advantage to γ-irradiation. We postulate that RHOB belongs to a novel class of "genes of recurrence" that have a dual role in metastasis and treatment resistance.
    Molecular oncology 11/2013; DOI:10.1016/j.molonc.2013.11.001 · 6.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone metastasis of lung adenocarcinoma (AC) is a frequent complication of advanced disease. The purpose of this study was to identify key mediators conferring robust prometastatic activity with clinical significance. We isolated highly metastatic subpopulations (HMS) using a previously described in vivo model of lung AC bone metastasis. We performed transcriptomic profiling of HMS and stringent bioinformatics filtering. Functional validation was assessed by overexpression and lentiviral silencing of single, double and triple combination in vivo and in vitro. We identified HDAC4, PITX1 and ROBO1 that decreased bone metastatic ability after their simultaneous abrogation. These effects were solely linked to defects in osseous colonization. The molecular mechanisms related to bone colonization were mediated by non-cell autonomous effects that include the following: (1) a marked decrease in osteoclastogenic activity in vitro and in vivo, an effect associated with reduced pro-osteoclastogenic cytokines IL-11 and PTHrP expression levels, as well as decreased in vitro expression of stromal rankl in conditions mimicking tumor-stromal interactions; (2) an abrogated response to TGF-β signaling by decreased phosphorylation and levels of Smad2/3 in tumor cells and (3) an impaired metalloproteolytic activity in vitro. Interestingly, coexpression of HDAC4 and PITX1 conferred high prometastatic activity in vivo. Further, levels of both genes correlated with patients at higher risk of metastasis in a clinical lung AC data set and with a poorer clinical outcome. These findings provide functional and clinical evidence that this metastatic subset is an important determinant of osseous colonization. These data suggest novel therapeutic targets to effectively block lung AC bone metastasis.Oncogene advance online publication, 28 October 2013; doi:10.1038/onc.2013.440.
    Oncogene 10/2013; DOI:10.1038/onc.2013.440 · 8.56 Impact Factor
  • 05/2013; DOI:10.1530/boneabs.1.PP154
  • 01/2013; 5(2):79-84. DOI:10.4321/S1889-836X2013000200004
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Efficient metastasis requires survival and adaptation of tumor cells to stringent conditions imposed by the extracellular milieu. Identification of critical survival signaling pathways in tumor cells might unveil novel targets relevant in disease progression. To investigate the contribution of activated protein C (APC) and its receptor (endothelial protein C receptor [EPCR]) in animal models of lung cancer metastasis and in patients with lung adenocarcinoma. Signaling pathway triggered by APC/EPCR and its relevance in apoptosis was studied in vitro. Functional significance was assessed by silencing and blocking antibodies in several in vivo models of lung cancer metastasis in athymic nude Foxn1(nu) mice. We examined EPCR levels using a microarray dataset of 107 patients. Immunohistochemical analysis was performed in an independent cohort of 295 patients with lung adenocarcinoma. The effects of APC binding to EPCR rapidly triggered Akt and extracellular signal-regulated kinase signaling pathways, leading to attenuated in vitro apoptosis. In vivo, silencing of EPCR expression or blocking APC/EPCR interaction reduced infiltration in the target organ, resulting in impaired prometastatic activity. Moreover, overexpression of EPCR induced an increased metastatic activity to target organs. Analysis of clinical samples showed a robust association between high EPCR levels and poor prognosis, particularly in stage I patients. EPCR and its ligand APC promote cell survival that contributes to tumor cell endurance to stress favoring prometastatic activity of lung adenocarcinoma. EPCR/APC is a novel target of relevance in the clinical outcome of early-stage lung cancer.
    American Journal of Respiratory and Critical Care Medicine 03/2012; 186(1):96-105. DOI:10.1164/rccm.201110-1826OC · 11.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the role of the collagen-binding receptor discoidin domain receptor-1 (DDR1) in the initiation and development of bone metastasis. We conducted immunohistochemical analyses in a cohort of 83 lung cancer specimens and examined phosphorylation status in a panel of human lung cancer cell lines. Adhesion, chemotaxis, invasiveness, metalloproteolytic, osteoclastogenic, and apoptotic assays were conducted in DDR1-silenced cells. In vivo, metastatic osseous homing and colonization were assessed in a murine model of metastasis. DDR1 was expressed in a panel of human lung cancer cell lines, and high DDR1 levels in human lung tumors were associated with poor survival. Knockdown (shDDR1) cells displayed unaltered growth kinetics in vitro and in vivo. In contrast, shDDR1 cells showed reduced invasiveness in collagen matrices and increased apoptosis in basal conditions and induced apoptosis in vitro. More importantly, conditioned media of DDR1-knockdown cells decreased osteoclastogenic activity in vitro. Consequently, in a model of tumor metastasis to bone, lack of DDR1 showed decreased metastatic activity associated with reduced tumor burden and osteolytic lesions. These effects were consistent with a substantial reduction in the number of cells reaching the bone compartment. Moreover, intratibial injection of shDDR1 cells significantly decreased bone tumor burden, suggesting impaired colonization ability that was highly dependent on the bone microenvironment. Disruption of DDR1 hampers tumor cell survival, leading to impaired early tumor-bone engagement during skeletal homing. Furthermore, inhibition of DDR1 crucially alters bone colonization. We suggest that DDR1 represents a novel therapeutic target involved in bone metastasis.
    Clinical Cancer Research 02/2012; 18(4):969-80. DOI:10.1158/1078-0432.CCR-11-1686 · 8.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer comprises a large variety of histological subtypes with a frequent proclivity to form bone metastasis; a condition associated with dismal prognosis. To identify common mechanisms in the development of osteolytic metastasis, we systematically screened a battery of lung cancer cell lines and developed three models of non-small cell lung cancer (NSCLC) with a common proclivity to form osseous lesions, which represented different histological subtypes. Comparative analysis revealed different incidences and latency times. These differences were correlated with cell-type-specific secretion of osteoclastogenic factors, including macrophage inflammatory protein-1α, interleukin-8 and parathyroid hormone-related protein, some of which were exacerbated in conditions that mimicked tumor-stroma interactions. In addition, a distinct signature of matrix metalloproteinase (MMP) activity derived from reciprocal tumor-stroma interactions was detected for each tumor cell line. Thus, these results suggest subtle differences in the mechanisms of bone colonization for each lung cancer subtype, but share, although each to a different degree, dual MMP and osteoclastogenic activities that are differentially enhanced upon tumor-stromal interactions.
    Clinical and Experimental Metastasis 07/2011; 28(8):779-91. DOI:10.1007/s10585-011-9409-5 · 3.46 Impact Factor
  • Bone 05/2011; 48. DOI:10.1016/j.bone.2011.03.637 · 4.46 Impact Factor
  • Cancer Research 01/2011; 70(8 Supplement):289-289. DOI:10.1158/1538-7445.AM10-289 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone microenvironment and cell-cell interactions are crucial for the initiation and development of metastasis. By means of a pharmacologic approach, using the multitargeted tyrosine kinase inhibitor sunitinib, we tested the relevance of the platelet-derived growth factor receptor (PDGFR) axis in the bone marrow (BM) stromal compartment for the initiation and development of lung cancer metastasis to bone. PDGFRβ was found to be the main tyrosine kinase target of sunitinib expressed in BM stromal ST-2 and MC3T3-E1 preosteoblastic cells. In contrast, no expression of sunitinib-targeted receptors was found in A549M1 and low levels in H460M5 lung cancer metastatic cells. Incubation of ST-2 and human BM endothelial cells with sunitinib led to potent cell growth inhibition and induction of apoptosis in a dose-dependent manner. Similarly, sunitinib induced a robust proapoptotic effect in vivo on BM stromal PDGFRβ(+) cells and produced extensive disruption of tissue architecture and vessel leakage in the BM cavity. Pretreatment of ST-2 cells with sunitinib also hindered heterotypic adhesion to lung cancer cell lines. These effects were correlated with changes in cell-cell and cell-matrix molecules in both stromal and tumor cells. Pretreatment of mice with sunitinib before intracardiac inoculation of A549M1 or H460M5 cells caused marked inhibition of tumor cells homing to bone, whereas no effect was found when tumor cells were pretreated before inoculation. Treatment with sunitinib dramatically increased overall survival and prevented tumor colonization but not bone lesions, whereas combination with zoledronic acid resulted in marked reduction of osteolytic lesions and osseous tumor burden. Thus, disruption of the PDGFR axis in the BM stroma alters heterotypic tumor-stromal and tumor-matrix interactions, thereby preventing efficient engagement required for bone homing and osseous colonization. These results support the notion that concomitant targeting of the tumor and stromal compartment is a more effective approach for blocking bone metastasis.
    Cancer Research 01/2011; 71(1):164-74. DOI:10.1158/0008-5472.CAN-10-1708 · 9.28 Impact Factor
  • Bone 01/2011; 48(1). DOI:10.1016/j.bone.2010.10.137 · 4.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GABAergic projections emitted from the entopeduncular nucleus (ENT) and the substantia nigra pars reticulata (SNr) innervate different thalamic nuclei and they are known to be hyperactive after dopaminergic depletion. Here we show that isoform 2 of the vesicular glutamate transporter (VGLUT2) is expressed by neurons in the ENT nucleus but not in the SNr. Indeed, dual in situ hybridization demonstrated that the ENT nucleus contains two different subpopulations of projection neurons, one single-expressing GAD65/67 mRNAs and another one that co-expresses either of the GAD isoforms together with VGLUT2 mRNA. Unilateral dopaminergic depletion induced marked changes in pallidothalamic-projecting neuron gene expression, resulting in increased expression of GAD65/67 mRNAs together with a clear down-regulation of VGLUT2 mRNA expression. Our results indicate that the increased thalamic inhibition typical of dopamine depletion might be explained by a synergistic effect of increased GABA outflow coupled to decreased glutamate levels, both neurotransmitters coming from ENT neurons.
    Neurobiology of Disease 07/2008; 31(3):422-32. DOI:10.1016/j.nbd.2008.05.019 · 5.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and a dismal prognosis. To identify and functionally characterize genes involved in the mechanisms of osseous metastasis, we developed a murine lung cancer model. Comparative transcriptomic analysis identified genes encoding signaling molecules (such as TCF4 and PRKD3) and cell anchorage-related proteins (MCAM and SUSD5), some of which were basally modulated by transforming growth factor-beta (TGF-beta) in tumor cells and in conditions mimicking tumor-stromal interactions. Triple gene combinations induced not only high osteoclastogenic activity but also a marked enhancement of global metalloproteolytic activities in vitro. These effects were strongly associated with robust bone colonization in vivo, whereas this gene subset was ineffective in promoting local tumor growth and cell homing activity to bone. Interestingly, global inhibition of metalloproteolytic activities and simultaneous TGF-beta blockade in vivo led to increased survival and a remarkable attenuation of bone tumor burden and osteolytic metastasis. Thus, this metastatic gene signature mediates bone matrix degradation by a dual mechanism of induction of TGF-beta-dependent osteoclastogenic bone resorption and enhancement of stroma-dependent metalloproteolytic activities. Our findings suggest the cooperative contribution of host-derived and cell autonomous effects directed by a small subset of genes in mediating aggressive osseous colonization.
    Cancer Research 05/2008; 68(7):2275-85. DOI:10.1158/0008-5472.CAN-07-6493 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone metastases represent a devastating clinical problem in the most frequent neoplasies, especially in multiple myeloma, tumours breast, prostate and lung. The consequences include pain which is refractory to conventional analgesics, osteolysis often leading to bone-marrow compression and pathological fractures, and metabolic disorders. Recent advances in diagnosis using imaging techniques as well as different biochemical techniques have helped accurate diagnosis and follow-up. The increase in survival has improved through a multimodal approach combining, inhibition of osteolysis, with prophylactic orthopaedic surgery and radiation therapy. Recent advances in basic research have determined the molecular metastatic that can predict its proclivity to metastasize. Basic research will improve understanding of the basic mechanisms and lead to the clarification of molecular targets that will help in the development of medicines capable of preventing, decreasing or blocking the metastatic process.
    Anales del sistema sanitario de Navarra 01/2006; 29(2):177-88. · 0.56 Impact Factor

Publication Stats

117 Citations
87.61 Total Impact Points


  • 2006–2014
    • Universidad de Navarra
      • • Department of Oncology
      • • Center for Applied Medical Research (CIMA)
      Iruña, Navarre, Spain
  • 2011
    • Hospital Clínic de Barcelona
      Barcino, Catalonia, Spain