Weichao Bao

The Ohio State University, Columbus, OH, United States

Are you Weichao Bao?

Claim your profile

Publications (3)14.6 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ehrlichia chaffeensis infects monocytes/macrophages and causes human monocytic ehrlichiosis. To determine the role of type IV secretion (T4S) system in infection, candidates for T4S effectors were identified by bacterial two-hybrid screening of E. chaffeensis hypothetical proteins with positively charged C-terminus using E. chaffeensis VirD4 as bait. Of three potential T4S effectors, ECH0825 was highly upregulated early during exponential growth in a human monocytic cell line. ECH0825 was translocated from the bacterium into the host-cell cytoplasm and localized to mitochondria. Delivery of anti-ECH0825 into infected host cells significantly reduced bacterial infection. Ectopically expressed ECH0825 also localized to mitochondria and inhibited apoptosis of transfected cells in response to etoposide treatment. In double transformed yeast, ECH0825 localized to mitochondria and inhibited human Bax-induced apoptosis. Mitochondrial manganese superoxide dismutase (MnSOD) was increased over ninefold in E. chaffeensis-infected cells, and the amount of reactive oxygen species (ROS) in infected cells was significantly lower than that in uninfected cells. Similarly, MnSOD was upregulated and the ROS level was reduced in ECH0825-transfected cells. These data suggest that, by upregulating MnSOD, ECH0825 prevents ROS-induced cellular damage and apoptosis to allow intracellular infection. This is the first example of host ROS levels linked to a bacterial T4S effector.
    Cellular Microbiology 02/2012; 14(7):1037-50. · 4.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The type IV secretion system is an important virulence factor in several host cell-associated pathogens, as it delivers various bacterial macromolecules to target eukaryotic cells. Genes homologous to several virB genes and virD4 of Agrobacterium tumefaciens are found in an intravacuolar pathogen Ehrlichia chaffeensis, the tick-borne causative agent of human monocytic ehrlichiosis. In particular, despite its small genome size, E. chaffeensis has four tandem virB6 paralogs (virB6-1, -2, -3, and -4) that are 3- to 10-fold larger than A. tumefaciens virB6. The present study for the first time illustrates the relevance of the larger quadruple VirB6 paralogs by demonstrating the protein expression and interaction in E. chaffeensis. All four virB6 paralogs were cotranscribed in THP-1 human leukemia and ISE6 tick cell cultures. The four VirB6 proteins and VirB9 were expressed by E. chaffeensis in THP-1 cells, and amounts of these five proteins were similar in isolated E. chaffeensis-containing vacuoles and vacuole-free E. chaffeensis. In addition, an 80-kDa fragment of VirB6-2 was detected, which was strikingly more prevalent in E. chaffeensis-containing vacuoles than in vacuole-free E. chaffeensis. Coimmunoprecipitation analysis revealed VirB9 interaction with VirB6-1 and VirB6-2; VirB6-4 interaction with VirB6-1, VirB6-2, and VirB6-3; and VirB6-2 80-kDa fragment interaction with VirB6-3 and VirB6-4. The interaction of VirB9 and VirB6-2 was confirmed by far-Western blotting. The results suggest that E. chaffeensis VirB9, the quadruple VirB6 proteins, and the VirB6-2 80-kDa fragment form a unique molecular subassembly to cooperate in type IV secretion.
    Journal of bacteriology 11/2008; 191(1):278-86. · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The uncultivable obligate intracellular bacterium Ehrlichia ewingii, previously known only as a canine pathogen, is the most recently recognized agent of human ehrlichiosis. E. ewingii is the only Ehrlichia species known to infect neutrophils. In the blood or in ex vivo culture, neutrophils generally have a short life span. In the present study, we investigated the effect of E. ewingii infection on spontaneous apoptosis of neutrophils. E. ewingii infection significantly delayed dog neutrophil apoptosis during ex vivo culture. The inhibitory effect on neutrophil apoptosis by E. ewingii was reversible on clearance of the organism. By using the fluorescent mitochondrial dyes Mitotracker Red 580 and JC-1, we found that E. ewingii infection stabilized mitochondrial integrity by maintaining mitochondrial membrane potential in neutrophils. These results suggest that E. ewingii delays spontaneous apoptosis of neutrophils via stabilization of host cell mitochondria.
    The Journal of Infectious Diseases 05/2008; 197(8):1110-8. · 5.85 Impact Factor

Publication Stats

35 Citations
14.60 Total Impact Points

Institutions

  • 2008–2012
    • The Ohio State University
      • Department of Veterinary Biosciences
      Columbus, OH, United States