Meredith E Wiseman

Stanford University, Stanford, CA, United States

Are you Meredith E Wiseman?

Claim your profile

Publications (4)22.64 Total impact

  • Meredith E Wiseman, Curtis W Frank
    [Show abstract] [Hide abstract]
    ABSTRACT: The orientation of a monoclonal, anti-streptavidin human IgG1 antibody on a model hydrophobic, CH(3)-terminated surface (1-dodecanethiol self-assembled monolayer on gold) was studied by monitoring the mechanical coupling between the adsorbed layer and the surface as well as the binding of molecular probes to the antibodies. In this study, the streptavidin antigen was used as a probe for the Fab portions of the antibody, while bacteria-derived Protein G' was used as a probe for the Fc region. Bovine serum albumin (BSA) acted as a blocking protein. Monolayer coverage occurred around 468 ng/cm(2). Below 100 ng/cm(2), antibodies were found to adsorb flat-on, tightly coupled to the surface and unable to capture their antigen, whereas the Fc region was able to bind Protein G'. At half-monolayer coverage, there was a transition in the mechanism of adsorption to allow for vertically oriented antibodies, as evidenced by the binding of both Protein G' and streptavidin as well as looser mechanical coupling with the surface. Monolayer coverage was characterized by a reduced level in probe binding per antibody and an even less rigid coupling to the surface.
    Langmuir 12/2011; 28(3):1765-74. · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biodegradable polymer microspheres have been successfully utilized as a medium for controlled protein or peptide-based drug release. Because the release kinetics has been typically controlled by modulating physical or chemical properties of the medium, these parameters must be optimized to obtain a specific release profile. However, due to the complexity of the release mechanism and the complicated interplay between various design parameters of the release medium, detailed prediction of the resulting release profile is a challenge. Herein we suggest a simple method to target specific release profiles more efficiently by integrating release profiles for an array of different microsphere types. This scheme is based on our observation that the resulting release profile from a mixture of different samples can be predicted as the linear summation of the individually measured release profiles of each sample. Hence, by employing a linear equation at each time point and formulating them as a matrix equation, we could determine how much of each microsphere type to include in a mixture in order to have a specific release profile. In accordance with this method, several targeted release profiles were successfully obtained. We expect that the proposed method will allow us to overcome limitations in controlling complicated release mechanisms so that drug delivery systems can be reliably designed to satisfy clinical demands.
    Biomaterials 09/2009; 30(34):6648-54. · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: a b s t r a c t Biodegradable polymer microspheres have been successfully utilized as a medium for controlled protein or peptide-based drug release. Because the release kinetics has been typically controlled by modulating physical or chemical properties of the medium, these parameters must be optimized to obtain a specific release profile. However, due to the complexity of the release mechanism and the complicated interplay between various design parameters of the release medium, detailed prediction of the resulting release profile is a challenge. Herein we suggest a simple method to target specific release profiles more effi-ciently by integrating release profiles for an array of different microsphere types. This scheme is based on our observation that the resulting release profile from a mixture of different samples can be predicted as the linear summation of the individually measured release profiles of each sample. Hence, by employing a linear equation at each time point and formulating them as a matrix equation, we could determine how much of each microsphere type to include in a mixture in order to have a specific release profile. In accordance with this method, several targeted release profiles were successfully obtained. We expect that the proposed method will allow us to overcome limitations in controlling complicated release mechanisms so that drug delivery systems can be reliably designed to satisfy clinical demands.
    Biomaterials 01/2009; 30:6648-6654. · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interpenetrating polymer networks (IPNs) have been the subject of extensive study since their advent in the 1960s. Hydrogel IPN systems have garnered significant attention in the last two decades due to their usefulness in biomedical applications. Of particular interest are the mechanical enhancements observed in "double network" IPN systems which exhibit nonlinear increases in fracture properties despite being composed of otherwise weak polymers. We have built upon pioneering work in this field as well as in responsive IPN systems to develop an IPN system based on end-linked poly-(ethylene glycol) (PEG) and loosely crosslinked poly(acrylic acid) (PAA) with hydrogen bond-reinforced strain-hardening behavior in water and high initial Young's moduli under physiologic buffer conditions through osmotically induced pre-stress. Uniaxial tensile tests and equilibrium swelling measurements were used to study PEG/PAA IPN hydrogels having second networks prepared with varying crosslinking and photoinitiator content, pH, solids content, and comonomers. Studies involving the addition of non-ionic comonomers and neutralization of the second network showed that template polymerization appears to be important in the formation of mechanically enhanced IPNs.
    Polymers for Advanced Technologies 04/2008; 19(6):647-657. · 1.64 Impact Factor

Publication Stats

43 Citations
22.64 Total Impact Points

Institutions

  • 2008–2011
    • Stanford University
      • • Department of Chemical Engineering
      • • Department of Mechanical Engineering
      Stanford, CA, United States