Prudence M Stanford

Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia

Are you Prudence M Stanford?

Claim your profile

Publications (11)52.75 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammary gland development is coupled to reproductive events by hormonal cues of ovarian and pituitary origin, which activate a genomic regulatory network. Identification of the components and regulatory links that comprise this network will provide the basis for defining the network's dynamic response during normal development and its perturbation during breast carcinogenesis. In this study KIBRA was identified as a transcript showing decreased expression associated with failed mammary gland development in Prlr knockout mammary epithelium. It is strongly up-regulated during pregnancy, falls during lactation and is again up-regulated during involution of the gland at weaning. A bioinformatic approach was undertaken to identify potential binding partners which interact with the WW domains of KIBRA. We show that KIBRA binds to a WW domain binding motif, PPxY, in the tyrosine kinase receptor DDR1, and dissociates upon treatment with the DDR1 ligands collagen type I or IV. In addition we show that KIBRA and DDR1 also interact with PKCz to form a trimeric complex. Finally, overexpression and knockdown studies demonstrate that KIBRA promotes the collagen-stimulated activation of the MAPK cascade. Thus KIBRA may play a role in how the reproductive state influences the mammary epithelial cell to respond to changing cell-context information, such as experienced during the tissue remodeling events of mammary gland development.
    Biochimica et Biophysica Acta 04/2008; 1783(3):383-93. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The proliferative phase of mammary alveolar morphogenesis is initiated during early pregnancy by rising levels of serum prolactin and progesterone, establishing a program of gene expression that is ultimately responsible for the development of the lobuloalveoli and the onset of lactation. To explore this largely unknown genetic program, we constructed transcript profiles derived from transplanted mammary glands formed by recombination of prolactin receptor (Prlr) knockout or wild-type mammary epithelium with wild-type mammary stroma. Comparison with profiles derived from prolactin-treated Scp2 mammary epithelial cells produced a small set of commonly prolactin-regulated genes that included the negative regulator of cytokine signaling, Socs2 (suppressor of cytokine signaling 2), and the ets transcription factor, E74-like factor 5 (Elf5). Homozygous null mutation of Socs2 rescued the failure of lactation and reduction of mammary signal transducer and activator of transcription 5 phosphorylation that characterizes Prlr heterozygous mice, demonstrating that mammary Socs2 is a key regulator of the prolactin-signaling pathway. Reexpression of Elf5 in Prlr nullizygous mammary epithelium restored lobuloalveolar development and milk production, demonstrating that Elf5 is a transcription factor capable of substituting for prolactin signaling. Thus, Socs2 and Elf5 are key members of the set of prolactin-regulated genes that mediate prolactin-driven mammary development.
    Molecular Endocrinology 05/2006; 20(5):1177-87. · 4.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is unclear whether there are early clinical features that can distinguish between patients with familial and non-familial frontotemporal dementia (FTD). To compare the clinical features of FTD cases who have tau gene mutations with those of cases with a family history of FTD but no tau gene mutation, and with sporadic cases with neither feature. Comparisons of the behavioural, cognitive, and motor features in 32 FTD patients (five positive for tau gene mutations, nine familial but tau negative, and 18 tau negative sporadic) showed that age of onset and duration to diagnosis did not differ between the groups. Apathy was not observed in tau mutation positive cases, and dysexecutive signs were more frequent in familial tau mutation negative cases. Memory deficits and behavioural changes were common in all groups. In comparison with other neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease, neither tau gene mutations nor strong familial associations confer earlier disease susceptibility.
    Journal of Neurology Neurosurgery &amp Psychiatry 01/2005; 75(12):1743-5. · 4.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tau gene mutations with insoluble Tau neuropathology have been identified in pedigrees with frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). Other neurodegenerative diseases, including progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), are also characterised by insoluble Tau neuropathology. This study sought to determine the nature and frequency of tau gene mutations in an affected proband cohort of patients within this spectrum of neurodegenerative diseases. Sixty-four individuals with clinical features consistent with FTD and other tauopathies were referred over a three year period. There was neuropathological confirmation of disease in 30%. Individuals were screened for mutations in the coding region and flanking intronic regions of the tau gene by direct sequencing of PCR products. Four confirmed tau gene mutations were identified representing 6.3 % for the total affected proband cohort. Tau gene mutations were found in three of twelve (25%) of the cases with a family history of dominantly inherited frontotemporal dementia, but in only one of 25 cases without a family history (4 %). Although tauopathies have been considered to result from genetic defects, screening for tau gene mutations in sporadic cases is not likely to identify pathogenic mutations.
    Journal of Neurology 10/2004; 251(9):1098-104. · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prolactin (PRL) is one of a family of related hormones including growth hormone (GH) and placental lactogen (PL) that are hypothesized to have arisen from a common ancestral gene about 500 million years ago. Over 300 different functions of PRL have been reported, highlighting the importance of this pituitary hormone. PRL is also synthesized by a number of extra-pituitary tissues including the mammary gland and the uterus. Most of PRL's actions are mediated by the unmodified 23 kDa peptide, however, PRL may be modified post-translation, thereby altering its biological effects. PRL exerts these effects by binding to its receptor, a member of the class I cytokine receptor super-family. This activates a number of signaling pathways resulting in the transcription of genes necessary for the tissue specific changes induced by PRL. Mouse knockout models of the major forms of the PRL receptor have confirmed the importance of PRLs role in reproduction. Further knockout models have provided insight into the importance of PRL signaling intermediates and the advent of transcript profiling has allowed the elucidation of a number of PRL target genes.
    Annals of Medicine 01/2004; 36(6):414-25. · 5.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The majority of cases with frontotemporal dementia (FTD) have no tau deposition in the brain, yet mutations in the tau gene lead to a similar clinical phenotype with insoluble tau depositing in neuropathological lesions. We report two tau gene mutations at positions +19 and +29, in the intronic sequences immediately following the stem loop structure in exon 10, which segregate with FTD. Exon-trapping experiments showed that these gene mutations alter the splicing out of exon 10 and produce an increase in tau isoforms with three microtubule binding domains (three repeat tau). Mutagenesis experiments demonstrated that the +19 mutation was responsible for the increase in three repeat tau, possibly by altering an intron silencer modulator sequence element found at this region of the gene. Microtubule binding experiments revealed a significant decrease in microtubule assembly with increasing amounts of three and decreasing amounts of four repeat tau. Brain autopsy was available in one case. Analysis of the type of soluble tau isoforms revealed an increase in three repeat tau and an absence of tau isoforms with exon 3 inserts. No insoluble tau was isolated in the tissue fractions, consistent with the absence of tau-positive histopathology. There was also an increase in tau degradation products suggestive of increased proteolysis. This increase in tau breakdown products was associated with TUNEL- and activated caspase-3-positive neurons identified histologically. These studies show that increases in soluble three repeat tau can be responsible for FTD in cases with tau gene mutations in the intronic region immediately adjacent to the stem loop in exon 10. These cases of FTD have tau isoforms (without exon 3 inserts) that do not form abnormal aggregates and appear more prone to proteolysis. The increase in tau proteolysis was associated with increased evidence of apoptosis. This mechanism of neurodegeneration may be more applicable to the majority of FTD cases, which do not accumulate insoluble tau deposits.
    Brain 05/2003; 126(Pt 4):814-26. · 9.92 Impact Factor
  • Source
    Brain 09/2001; · 9.92 Impact Factor
  • Brain. 08/2001; 124(8):1668-1670.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic mutations in the tau gene on chromosome 17 are known to cause frontotemporal dementias. We have identified a novel silent mutation (S305S) in the tau gene in a subject without significant atrophy or cellular degeneration of the frontal and temporal cortices. Rather the cellular pathology was characteristic of progressive supranuclear palsy, with neurofibrillary tangles concentrating within the subcortical regions of the basal ganglia. Two affected family members presented with symptoms of dementia and later developed neurological deficits including abnormality of vertical gaze and extrapyramidal signs. The third presented with dystonia of the left arm and dysarthria, and later developed a supranuclear gaze palsy and falls. The mutation is located in exon 10 of the tau gene and forms part of a stem-loop structure at the 5' splice donor site. Although the mutation does not give rise to an amino acid change in the tau protein, functional exon-trapping experiments show that it results in a significant 4.8-fold increase in the splicing of exon 10, resulting in the presence of tau containing four microtubule-binding repeats. This study provides direct molecular evidence for a functional mutation that causes progressive supranuclear palsy pathology and demonstrates that mutations in the tau gene are pleiotropic.
    Brain 06/2000; 123 ( Pt 5):880-93. · 9.92 Impact Factor
  • Neurobiology of Aging - NEUROBIOL AGING. 01/2000; 21:36-36.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Summary Genetic mutations in the tau gene on chromosome 17 are known to cause frontotemporal dementias. We have identified a novel silent mutation (S305S) in the tau gene in a subject without significant atrophy or cellular degeneration of the frontal and temporal cortices. Rather the cellular pathology was characteristic of progressive supranuclear palsy, with neurofibrillary tangles concentrating within the subcortical regions of the basal ganglia. Two affected family members presented with symptoms of dementia and later developed neurological deficits including abnormality of vertical gaze and extrapyramidal signs. The third presented with dystonia of the left arm and dysarthria, and