J Kovár

Charles University in Prague, Praha, Praha, Czech Republic

Are you J Kovár?

Claim your profile

Publications (38)96.59 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with alcoholic liver disease (ALD) often display disturbed iron indices. Hepcidin, a key regulator of iron metabolism, has been shown to be down-regulated by alcohol in cell lines and animal models. This down-regulation led to increased duodenal iron transport and absorption in animals. In this study, we investigated gene expression of duodenal iron transport molecules and hepcidin in three groups of patients with ALD (with anaemia, with iron overload and without iron overload) and controls. Expression of DMT1, FPN1, DCYTB, HEPH, HFE and TFR1 was measured in duodenal biopsies by using real-time PCR and Western blot. Serum hepcidin levels were measured by using ELISA. Serum hepcidin was decreased in patients with ALD. At the mRNA level, expressions of DMT1, FPN1 and TFR1 genes were significantly increased in ALD. This pattern was even more pronounced in the subgroups of patients without iron overload and with anaemia. Protein expression of FPN1 paralleled the increase at the mRNA level in the group of patients with ALD. Serum ferritin was negatively correlated with DMT1 mRNA. The down-regulation of hepcidin expression leading to up-regulation of iron transporters expression in the duodenum seems to explain iron metabolism disturbances in ALD. Alcohol consumption very probably causes suppression of hepcidin expression in patients with ALD.
    Journal of Cellular and Molecular Medicine 06/2014; · 4.75 Impact Factor
  • Kamila Balusikova, Jan Kovar
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been shown in previous studies that liver HEP-G2 cells (human hepatocellular carcinoma) lose their ability to express active alcohol dehydrogenase (ADH) and cytochrome P450 2E1 (CYP2E1). Although both are ethanol-inducible enzymes, short-term exposure to ethanol does not cause any changes in expression or activity in cultured HEP-G2 cells. Therefore, we tested the effect of long-term exposure to ethanol on the expression and activity of both ADH and CYP2E1 in these cells. The expression of ADH and CYP2E1 was assessed at the mRNA and/or protein level using real-time PCR and Western blot analysis. Specific colorimetric assays were used for the measurement of ADH and CYP2E1 enzymatic activities. Caco-2 cells (active CYP2E1 and inactive ADH) were used as control cells. Significantly increased protein expression of ADH (about 2.5-fold) as well as CYP2E1 (about 1.6-fold) was found in HEP-G2 cells after long-term (12 mo) exposure to ethanol. The activity of ADH and CYP2E1 was also significantly increased from 12 ± 3 and 6 ± 1 nmol/h/mg of total protein to 191 ± 9 and 57 ± 9 nmol/h/mg of total protein, respectively. We suggest that the loss of activity of ethanol-metabolizing enzymes in cultured HEP-G2 cells is reversible and can be induced by prolonged exposure to ethanol. We are therefore able to reactivate HEP-G2 cells metabolic functions concerning ethanol oxidation just by modification of in vitro culture conditions without necessity of transfection with its side effect - enzyme overexpression.
    In Vitro Cellular & Developmental Biology - Animal 07/2013; · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Disturbances of iron metabolism are observed in chronic liver diseases. In the present study, we examined gene expression of duodenal iron transport molecules and hepcidin in patients with hereditary hemochromatosis (HHC) (treated and untreated), involving various genotypes (genotypes which represent risk for HHC were examined), and in patients with iron deficiency anaemia (IDA). Gene expressions of DMT1, ferroportin, Dcytb, hephaestin, HFE and TFR1 were measured in duodenal biopsies using real-time PCR and Western blot. Serum hepcidin levels were measured using ELISA. DMT1, ferroportin and TFR1 mRNA levels were significantly increased in post-phlebotomized hemochromatics relative to controls. mRNAs of all tested molecules were significantly increased in patients with IDA compared to controls. The protein expression of ferroportin was increased in both groups of patients but not significantly. Spearman rank correlations showed that DMT1 versus ferroportin, Dcytb versus hephaestin and DMT1 versus TFR1 mRNAs were positively correlated regardless of the underlying cause, similarly to protein levels of ferroportin versus Dcytb and ferroportin versus hephaestin. Serum ferritin was negatively correlated with DMT1 mRNA in investigated groups of patients, except for HHC group. A decrease of serum hepcidin was observed in IDA patients, but this was not statistically significant. Our data showed that although untreated HHC patients do not have increased mRNA levels of iron transport molecules when compared to normal subjects, the expression is relatively increased in relation to body iron stores. On the other hand, post-phlebotomized HHC patients had increased DMT1 and ferroportin mRNA levels possibly due to stimulated erythropoiesis after phlebotomy.
    Journal of Cellular and Molecular Medicine 10/2011; 16(8):1816-26. · 4.75 Impact Factor
  • EJC Supplements 06/2010; 8(5):70-70. · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, the effect of novel taxane SB-T-1216 and paclitaxel on sensitive MDA-MB-435 and resistant NCI/ADR-RES human breast cancer cells was compared. Cell growth and survival were evaluated after 96-hour incubation with tested concentrations of taxanes. The effect on the formation of microtubule bundles was assessed employing fluorescence microscopy and on the cell cycle employing flow cytometric analysis. The activity of caspases was assessed employing commercial colorimetric kits. The IC(50) (concentration resulting in 50% of living cells in comparison with the control) of SB-T-1216 in sensitive cells was 0.6 nM versus 1 nM for paclitaxel. However, the IC(50) of SB-T-1216 in resistant cells was 1.8 nM versus 300 nM for paclitaxel. Both SB-T-1216 and paclitaxel at death-inducing concentrations induced the formation of microtubule bundles in sensitive as well as resistant cells. Cell death induced in sensitive and resistant cells by paclitaxel was associated with the accumulation of cells in the G(2)/M phase. On the contrary, cell death induced by SB-T-1216 took place without the accumulation of cells in the G(2)/M phase but with a decreased number of G(1) cells and the accumulation of hypodiploid cells. Both SB-T-1216 and paclitaxel activated caspase-3, caspase-9, caspase-2 and caspase-8 in sensitive as well as resistant cells. Cell death induced by both paclitaxel and novel taxane SB-T-1216 in breast cancer cells is associated with caspase activation and with the formation of interphase microtubule bundles. Novel taxane SB-T-1216, but not paclitaxel, seems to be capable of inducing cell death without the accumulation of cells in the G(2)/M phase.
    Anticancer research 09/2009; 29(8):2951-60. · 1.71 Impact Factor
  • Source
    T Kopska, V Fürstova, J Kovar
    [Show abstract] [Hide abstract]
    ABSTRACT: Successful isolation of Langerhans islets is a crucial prerequisite for their experimental or possible clinical use such as transplantation. Centrifugation in a Ficoll gradient is a common step used for separation of Langerhans islets from exocrine tissue. However, islets have been reported to be negatively affected by employing Ficoll gradients. Therefore, the aim of this study was to modify the isolation procedure by excluding Ficoll gradient centrifugation to obtain a similar or better yield of viable, functional islets. In our modification of the isolation procedure, the separation of islets from exocrine tissue was based on their sedimentation rate combined with their differential ability to attach to the surface of culture dishes for suspension cells. The resulting purity of islets facilitated their handpicking from the suspension. The mean yield was 900 viable, insulin-producing islets per mouse, which was comparable to or even higher than the yield in commonly used protocols. Our modification of the isolation method may be useful when centrifugation in Ficoll gradient is undesirable due to potential toxicity.
    Transplantation Proceedings 01/2009; 40(10):3611-4. · 0.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We studied the effect of iron deficiency, i.e., 24-h preincubation in iron-free medium, and the effect of high level of non-transferrin iron, i.e., the preincubation in ferric citrate medium containing 500 microM ferric citrate, on the expression of DMT1, Dcytb, ferroportin, hephaestin, and ceruloplasmin in various functional types of human cells. The expression of these proteins potentially involved in non-transferrin iron transport across cell membranes was tested on mRNA level by quantitative real-time PCR as well as on protein level by western blot analysis in Caco-2 (colorectal carcinoma), K562 (erythroleukemia), and HEP-G2 (hepatocellular carcinoma) cells. We found that changes in non-transferrin iron availability, i.e., iron deficiency and high level of non-transferrin iron, affect the expression of tested proteins in a cell type-specific manner. We also demonstrated that changes in the expression on mRNA level do not often correlate with relevant changes on protein level.
    Molecular and Cellular Biochemistry 11/2008; 321(1-2):123-33. · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have shown previously that iron deprivation significantly stimulates the uptake of non-transferrin ferric iron from ferric citrate by erythroleukemia K562 cells and that this stimulation depends on protein synthesis. However, we have not detected increased expression of any known iron transport protein (Kovar J. et al. (2006) Blood Cells Mol Dis 37:95-99). Therefore, in order to identify membrane proteins of K562 cells with increased expression under iron deprivation, we employed the isolation of membrane proteins by two-phase partitioning system, protein separation by high-resolution 2D electrophoresis, computer differential analysis, and tandem mass spectrometry. Employing these techniques we identified two proteins with statistically significant upregulation, i.e., aldolase A (ALDA) and voltage-dependent anion channel 2 (VDAC2). The upregulation of aldolase A and VDAC2 in K562 cells under iron deprivation was also confirmed by western blot analysis. This is the first time when the control of aldolase A and VDAC2 levels by iron status of the cell is demonstrated.
    Molecular and Cellular Biochemistry 05/2008; 311(1-2):225-31. · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We tested the effects of various types of fatty acids, differing in the degree of saturation and in the cis/trans configuration of the double bond, on the growth and viability of NES2Y cells (a human pancreatic beta-cell line). We found that during a 48-hour incubation period, saturated fatty acids, i.e. palmitic and stearic acids, at a physiologically relevant concentration of 1 mM and higher concentrations induced death of the beta-cells while their counterpart unsaturated fatty acids, i.e. palmitoleic and oleic acids, did not induce cell death at concentrations up to 3 mM. We also found that unsaturated elaidic acid with a trans double bond exerted significant inhibition of growth of the beta-cells at a concentration approximately ten times lower, i.e. 0.1 mM vs. 1 mM, than counterpart oleic acid with a cis double bond. This is the first direct evidence that a trans unsaturated fatty acid is significantly more effective in inhibiting beta-cell growth than a counterpart cis unsaturated fatty acid. Furthermore, we newly demonstrated that beta-cell death induced by saturated fatty acids is related to significant increase of caspase-2 activity (2 to 5-fold increase) but not to caspase-3 activation. The growth-inhibiting effect of saturated fatty acids at concentrations lower than death-inducing concentrations correlates with certain increase of caspase-2 activity.
    Life Sciences 04/2008; 82(13-14):684-91. · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the effect of naturally occurring flavonoids and synthetic aurone derivatives on the formation of cardiotoxic doxorubicinol and transport of doxorubicin in breast cancer cells. Quercetin significantly inhibited the formation of doxorubicinol. Quercetin and aurones did not significantly affect transport of [14C]doxorubicin in human resistant breast cancer cells. In conclusion, quercetin should be further tested for its potency to decrease doxorubicin-mediated toxicity.
    Bioorganic & medicinal chemistry 03/2008; 16(4):2034-42. · 2.82 Impact Factor
  • M Koc, Z Nad'ová, J Kovár
    [Show abstract] [Hide abstract]
    ABSTRACT: We tested the effect of iron deprivation on cell death induction in human Raji cells pre-adapted to differing availability of extracellular iron. Iron deprivation was achieved by incubation in a defined iron-free medium. Original Raji cells have previously been adapted to long-term culture in a defined medium with 5 microg/ml of iron-saturated human transferrin as a source of iron. Raji/lowFe cells were derived from original Raji cells by subsequent adaptation to culture in the medium with 50 microm ferric citrate as a source of iron. Raji/lowFe-re cells were derived from Raji/lowFe cells by re-adaptation to the transferrin-containing (5 microg/ml) medium. Iron deprivation induced cell death in both Raji cells and Raji/lowFe-re cells; that is, cells pre-adapted to a near optimum source of extracellular iron (5 microg/ml of transferrin). However, Raji/lowFe cells preadapted to a limited source of extracellular iron (50 microm ferric citrate) became resistant to the induction of cell death by iron deprivation. We demonstrated that cell death induction by iron deprivation in Raji cells correlates with the activation of executioner caspase-3 and the cleavage of caspase-3 substrate, poly-ADP ribose polymerase. Two other executioner caspases, caspase-7 and caspase-6, were not activated. Taken together, we suggest that in human Raji cells, iron deprivation induces apoptotic cell death related to caspase-3 activation. However, the sensitivity of the cells to death induction by iron deprivation can be reversibly changed by extracellular iron availability. The cells pre-adapted to a limited source of extracellular iron became resistant.
    Cell Proliferation 01/2007; 39(6):551-61. · 2.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We tested the effect of iron deprivation on the uptake of iron from ferric citrate by human erythroleukemia K562 cells. The iron uptake after 24-h preincubation in defined iron-free medium was approximately 2-3x higher than after the preincubation in control transferrin-containing medium. The preincubation of K562 cells in iron-free medium together with the inhibitor of protein synthesis cycloheximide completely abrogated the stimulation of the iron uptake. The preincubation in iron-free medium resulted in a slight decrease (20%) of DMT1 mRNA level. The level of Dcytb, ferroportin and hephaestin mRNA did not exert any significant change. We also did not find any significant effect on the protein level of DMT1, Dcytb, ferroportin and hephaestin. We conclude that iron deprivation stimulates the uptake of non-transferrin iron in K562 cells and that this stimulation depends on protein synthesis. It seems that the expression of an unknown or seemingly unrelated protein(s) is involved.
    Blood Cells Molecules and Diseases 09/2006; 37(2):95-9. · 2.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have investigated the effect of 13 flavonoid derivatives on [(14)C]paclitaxel transport in two human breast cancer cell lines, the adriamycin-resistant NCI/ADR-RES and sensitive MDA-MB-435. For this study, we selected representatives of aurones, chalcones, flavones, flavonols, chromones, and isoflavones with known binding affinity toward nucleotide-binding domain (NBD2) of P-glycoprotein and for which no reported work is available regarding paclitaxel transport. Aurones CB-284, CB-285, CB-287, and ML-50 most effectively inhibited P-gp related transport in the resistant line in comparison with chalcones, flavones, flavonols, chromones, and isoflavone derivatives and accordingly increased the accumulation of [(14)C]paclitaxel and decreased its efflux. Those agents efficiently modulated paclitaxel transport in P-gp highly expressing resistant human breast cancer cells and they could increase the efficiency of chemotherapy in paclitaxel-resistant tumors. In contrast, the sensitive cell line responded reversely in that CB-284, CB-285, CB-287, and ML-50 significantly inhibited accumulation of [(14)C]paclitaxel and especially CB-287, which significantly stimulated its efflux. Some, but not all, of the data correlated with the binding of flavonoid derivatives to P-gp, and indicated that even in the P-gp highly expressing NCI/ADR-RES cells, the binding was not the only factor influencing the transport of [(14)C]paclitaxel. Opposite effects of flavonoid derivatives on the P-gp highly expressing and MDA-MB-435 non-expressing cell lines indicate that paclitaxel is not only transported by P-gp and let us assume that Mrp2 or ABCC5 seem to be good transport-candidates in these cells. The inhibition of paclitaxel accumulation and stimulation of its efflux are potentially unfavorable for drug therapy and since they could be due to modulation of drug transporters other than P-gp, their expression in tumors is of great significance for efficient chemotherapy.
    Bioorganic & Medicinal Chemistry 08/2006; 14(13):4519-25. · 2.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The resistance of tumors to classic taxanes (paclitaxel and docetaxel) presents problems in chemotherapy. Thus, new taxanes with higher antitumor activity in resistant tumors are synthesized. This study compared cytotoxicity and transport of paclitaxel and docetaxel with novel taxanes SB-T-1103, SB-T-1214, and SB-T-1216 in adriamycin-sensitive (MDA-MB-435) and -resistant (NCI/ADR-RES) human breast cancer cells. The cell lines examined differ in adriamycin transport, suggesting different expression of ABC membrane transporters. Reverse transcription-polymerase chain reaction revealed that NCI/ADR-RES cells expressed high levels of P-glycoprotein mRNA, which was absent in MDA-MB-435 cells, while the opposite was true for MRP2 mRNA. Both cell lines shared or differently expressed eight other ABC transporters and LRP. NCI/ADR-RES cells were 1,000-fold more resistant to paclitaxel and 600-fold more resistant to docetaxel in MTT assay than MDA-MB-435 cells, but almost equally sensitive to SB-T-1103, SB-T-1214, and SB-T-1216. This complied with the fact that NCI/ADR-RES cells absorbed almost 20-fold less [14C]paclitaxel, about 7-fold less docetaxel, and almost equal amounts of SB-T-1103, SB-T-1214, and SB-T-1216 as the MDA-MB-435 cells. Verapamil increased uptake of [14C]paclitaxel by NCI/ADR-RES cells 7-fold and decreased its efflux 2.5-fold; in contrast, it weakly influenced uptake and increased the efflux in MDA-MB-435 cells. SB-T-1103 and SB-T-1216 did not influence transport of paclitaxel, but SB-T-1214 decreased [14C]paclitaxel uptake in both cell lines indicating inhibition of uptake. This suggests that the novel taxanes are not inhibitors of P-glycoprotein. However, novel taxanes exert much higher activity on resistant tumor cells than classic taxanes and seem to be potential drugs for therapy in taxane-resistant tumors.
    Archiv für Experimentelle Pathologie und Pharmakologie 08/2005; 372(1):95-105. · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to elucidate the mechanisms involved in apoptosis induction by iron deprivation, we compared cells sensitive (38C13) and resistant (EL4) to apoptosis induced by iron deprivation. Iron deprivation was achieved by incubation in a defined iron-free medium. We detected the activation of caspase-3 as well as the activation of caspase-9 in sensitive cells but not in resistant cells under iron deprivation. Iron deprivation led to the release of cytochrome c from mitochondria into the cytosol only in sensitive cells but it did not affect the cytosolic localization of Apaf-1 in both sensitive and resistant cells. The mitochondrial membrane potential (Deltapsi(m)) was dissipated within 24 h in sensitive cells due to iron deprivation. The antiapoptotic Bcl-2 protein was found to be associated with mitochondria in both sensitive and resistant cells and the association did not change under iron deprivation. On the other hand, under iron deprivation we detected translocation of the proapoptotic Bax protein from the cytosol to mitochondria in sensitive cells but not in resistant cells. Taken together, we suggest that iron deprivation induces apoptosis via mitochondrial changes concerning proapoptotic Bax translocation to mitochondria, collapse of the mitochondrial membrane potential, release of cytochrome c from mitochondria, and activation of caspase-9 and caspase-3.
    APOPTOSIS 04/2005; 10(2):381-93. · 3.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heat shock protein 90 (Hsp90) is a molecular chaperone abundant in eukaryotic cells. However, its exact role is not completely understood yet. Employing an iron-binding assay and mass spectrometric analysis, we have identified human Hsp90 as an iron-binding protein in membrane protein preparations of human HeLa cells. Western blot analysis and confocal microscopy confirmed that a portion of cellular Hsp90 is associated with the plasma membrane, but it does not seem to be expressed on the cell surface. The iron-binding assay with purified human Hsp90 confirmed iron binding by Hsp90. Thus we suggest that Hsp90 is an iron-binding protein associated with the plasma membrane.
    Cellular Physiology and Biochemistry 02/2004; 14(1-2):41-6. · 3.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Iron deprivation induces apoptosis in some sensitive cultured tumour cells, while other cells are resistant. In order to elucidate the mechanisms involved in apoptosis induction by iron deprivation, we studied the expression of p53 and the expression of selected p53-regulated genes. To discriminate between changes coupled only with iron deprivation and changes involved in apoptosis induction by iron deprivation, we compared the expression of the genes in sensitive (human Raji, mouse 38C13) versus resistant (human HeLa, mouse EL4) cells under iron deprivation. Iron deprivation was achieved by incubation in a defined iron-free medium. The level of p53 mRNA decreased significantly under iron deprivation in sensitive cells, but it did not change in resistant cells. On the contrary, the level of the p53 protein under iron deprivation was slightly increased in sensitive cells while it was not changed in resistant cells. The activity of p53 was assessed by the expression of selected p53-regulated targets, i.e. p21(WAF1/CIP1) gene, mdm2, bcl-2 and bax. We did not detect any relevant change in mRNA levels as well as in protein levels of these genes under iron deprivation with the exception of p21(WAF1/CIP1). We detected a significant increase in the level of p21 mRNA in both (sensitive and resistant) mouse cell lines tested, however, we did not find any change in both (sensitive and resistant) human cell lines. Moreover, the p21(WAF1/CIP1) protein was accumulated in mouse-sensitive 38C13 cells under iron deprivation while all other cell lines tested, including human-sensitive cell line Raji, did not show any accumulation of p21(WAF1/CIP1) protein. It seems that the p21(WAF1/CIP1) mRNA, as well as protein accumulation, is not specifically coupled with apoptosis induction by iron deprivation and that it is rather cell-line specific. Taken together, we suggest that iron deprivation induces apoptosis at least in some cell types independently of the p53 pathway.
    Cell Proliferation 09/2003; 36(4):199-213. · 2.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We studied the effects of thiol availability on apoptosis induction in B-cell lymphoma 38C13, T-cell lymphoma EL4, and also other cells. Compounds with a free SH group are required for survival and growth of 38C13 cells but not of EL4 cells. Thiol deprivation (2-mercaptoethanol concentrations about 0.3 microM and lower) induced apoptosis in 38C13 cells. On the other hand, thiol excess (2-mercaptoethanol concentrations higher than 300 microM) induced apoptosis in 38C13 cells and EL4 cells as well as in other cells (e.g. Raji, HeLa). L-cystine and non-thiol antioxidant ascorbic acid were unable to support survival of 38C13 cells. Ascorbic acid induced cell death at concentrations higher than 600 microM. Thiol cross-linking compound diamide (100 microM and higher) abrogated the survival-supporting effect of 2-mercaptoethanol (50 microM). Apoptosis induction by thiol deprivation and by thiol excess was not directly related to a specific significant change in the p53 level or p53 activation. Apoptosis induction by thiol excess was associated with a certain decrease in the Bcl-2 level while the Bax level did not change. We conclude that both thiol deprivation and thiol excess can induce apoptosis in lymphoma cells. Apoptosis induction by thiol deprivation is specifically related to the presence of a free SH group. However, apoptosis induction by thiol excess does not seem to be specifically related to the presence of a free SH group. It probably results from the excess of a reductant. Apoptotic control protein p53 does not seem to play a significant role in apoptosis induction either by thiol deprivation or by thiol excess.
    Folia biologica 02/2002; 48(2):58-68. · 1.22 Impact Factor
  • J Musílková, J Kovár
    [Show abstract] [Hide abstract]
    ABSTRACT: We studied the effects of Ca(2+) and K(+) on non-transferrin iron uptake from ferric citrate complex by HeLa and K562 cells. Uptake experiments in Na-HEPES buffer (137 mM NaCl, 4 mM KCl) showed that extracellular Ca(2+) stimulated the iron uptake. The rate of iron uptake in 4 mM Ca(2+) was about 3-5 times higher than without Ca(2+). The iron uptake in K-HEPES buffer (68 mM NaCl, 75 mM KCl) with a high K(+) level was transiently stimulated during the first 10 min. The rate of iron uptake for 0.4 mM Ca(2+) was approximately 3 times higher in K-HEPES buffer than in Na-HEPES buffer. The calcium channel blockers verapamil (50 microM) and nifedipine (5 microM) had no effect on the uptake either in control Na-HEPES buffer or after K(+) stimulation in K-HEPES buffer. The sodium channel blocker lidocaine (50 microM) also had no effect on the uptake of iron in Na-HEPES buffer as well as after K(+) stimulation. Furthermore, the iron uptake was not significantly affected when Na(+) in the Na-HEPES and K-HEPES buffers was replaced by isotonic saccharose. We conclude that extracellular calcium per se, and not intracellular calcium or Ca(2+) transport, stimulates ferric iron uptake by both HeLa and K562 cells. A high level of extracellular K(+) also stimulates the uptake, probably via cell membrane depolarization. Na(+) is not involved in these stimulations of iron uptake. The transient K(+) effect and continuous Ca(2+) effect seem to be additive.
    Biochimica et Biophysica Acta 10/2001; 1514(1):117-26. · 4.66 Impact Factor
  • J Kovár, T Valenta, H Stýbrová
    [Show abstract] [Hide abstract]
    ABSTRACT: We studied the sensitivity of tumor cells to the induction of apoptosis by iron deprivation. Iron deprivation was achieved by the employment of a defined iron-deficient culture medium. Mouse 38C13 cells and human Raji cells die within 48 and 96 h of incubation in iron-deficient medium, respectively. On the contrary, mouse EL4 cells and human HeLa cells are completely resistant to the induction of death under the same experimental arrangement. Deoxyribonucleic acid fragmentation analysis by agarose gel electrophoresis as well as flow cytometric analysis after propidium iodide staining detected in 38C13 and Raji cells, but not in EL4 and HeLa cells, changes characteristic to apoptosis. The 38C13 cells, sensitive to iron deprivation, also displayed a similar degree of sensitivity to apoptosis induction by thiol deprivation (achieved by 2-mercaptoethanol withdrawal from the culture medium) as well as by rotenone (50 nM), hydroxyurea (50 microM), methotrexate (20 nM), and doxorubicin (100 nM). Raji cells shared with 38C13 cells a sensitivity to rotenone, methotrexate, doxorubicin, and, to a certain degree, to hydroxyurea. However, Raji cells were completely resistant to thiol deprivation. EI4 and HeLa cells, resistant to iron deprivation, also displayed a greater degree of resistance to most of the other apoptotic stimuli than did their sensitive counterparts. We conclude that some tumor cells in vitro are sensitive to apoptosis induction by iron deprivation, while other tumor cells are resistant. All the tumors found to be sensitive to iron deprivation in this study (four cell lines) are of hematopoietic origin. The mechanism of resistance to apoptosis induction by iron deprivation differs from the mechanism of resistance to thiol deprivation.
    In Vitro Cellular & Developmental Biology - Animal 01/2001; 37(7):450-8. · 1.29 Impact Factor

Publication Stats

349 Citations
96.59 Total Impact Points

Institutions

  • 2008–2014
    • Charles University in Prague
      • 3rd Faculty of Medicine
      Praha, Praha, Czech Republic
  • 2006–2008
    • Státní Zdravotní Ústav
      Praha, Praha, Czech Republic
  • 1995–2008
    • Academy of Sciences of the Czech Republic
      • Ústav molekulární genetiky
      Praha, Hlavni mesto Praha, Czech Republic
  • 2000
    • The Police Academy of the Czech Republic in Prague
      Praha, Praha, Czech Republic
  • 1991–1992
    • University of Colorado
      • Department of Medicine
      Denver, CO, United States
  • 1988
    • Institute of Molecular Genetics AS CR
      Praha, Praha, Czech Republic