Are you Craig Moore?

Claim your profile

Publications (2)11.04 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cell (DC) differentiation is abnormal in type 1 diabetes mellitus (T1DM). However, the nature of the relationship between this abnormality and disease pathogenesis is unknown. We studied the LPS response in monocytes and monocyte-derived DCs isolated from T1DM patients and from non-T1DM controls. In T1DM patients, late LPS-mediated nuclear DNA binding by RelA, p50, c-Rel, and RelB was impaired as compared with type 2 DM, rheumatoid arthritis, and healthy subjects, associated with impaired DC CD40 and MHC class I induction but normal cytokine production. In TIDM monocytes, RelA and RelB were constitutively activated, and the src homology 2 domain-containing protein tyrosine phosphatase (SHP-1), a negative regulator of NF-kappaB, was overexpressed. Addition of sodium stibogluconate, a SHP-1 inhibitor, to DCs differentiating from monocyte precursors restored their capacity to respond to LPS in approximately 60% of patients. The monocyte and DC NF-kappaB response to LPS is thus a novel phenotypic and likely pathogenetic marker for human T1DM. SHP-1 is at least one NF-kappaB regulatory mechanism which might be induced as a result of abnormal inflammatory signaling responses in T1DM monocytes.
    The Journal of Immunology 04/2008; 180(5):3166-75. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cell (DC) differentiation is abnormal in type 1 diabetes mellitus (T1DM). However, the nature of the relationship between this abnormality and disease pathogenesis is unknown. We studied the LPS response in monocytes and monocyte-derived DCs isolated from T1DM patients and from non-T1DM controls. In T1DM patients, late LPS-mediated nuclear DNA binding by RelA, p50, c-Rel, and RelB was impaired as compared with type 2 DM, rheumatoid arthritis, and healthy subjects, associated with impaired DC CD40 and MHC class I induction but normal cytokine production. In TIDM monocytes, RelA and RelB were constitutively activated, and the src homology 2 domain-containing protein tyrosine phosphatase (SHP-1), a negative regulator of NF-κB, was overexpressed. Addition of sodium stibogluconate, a SHP-1 inhibitor, to DCs differentiating from monocyte precursors restored their capacity to respond to LPS in ∼60% of patients. The monocyte and DC NF-κB response to LPS is thus a novel phenotypic and likely pathogenetic marker for human T1DM. SHP-1 is at least one NF-κB regulatory mechanism which might be induced as a result of abnormal inflammatory signaling responses in T1DM monocytes.
    The Journal of Immunology 03/2008; 180(5):3166-3175. · 5.52 Impact Factor