Zengguang Xu

Tongji Medical University, Shanghai, Shanghai Shi, China

Are you Zengguang Xu?

Claim your profile

Publications (14)43.67 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Therapeutic options for patients with non-small cell lung cancer (NSCLC) are often restricted to systemic chemotherapy. However, the molecular and cellular processes during chemotherapy of advanced NSCLC patients still remain unclear. Here we investigated the stimulatory activity of plasma in advanced NSCLC patients and its correlation with chemotherapy. Whole blood samples from advanced NSCLC patients were collected before the first, second, and third cycle of chemotherapy. Plasma was isolated following centrifugation of whole blood. PBMCs were isolated from whole-blood specimens by Ficoll-Hypaque density gradient centrifugation. Immune complexes (ICs) were isolated from NSCLC plasma using the IgG Purification Kit. qRT-PCR was used to detect a broad array of cytokines and chemokines. The plasma in advanced NSCLC patients was endowed with stimulatory activity and capable of inducing proinflammatory cytokines. Both nucleic acids and immunoglobulin components were required for the stimulatory activity of NSCLC plasma. In consistent, TLR8 and TLR9 conferred the stimulatory activity of plasma in NSCLC patients. Of note, we revealed the decreased stimulatory activity of plasma in patients who responded to chemotherapy. Our findings demonstrated that the plasma of advanced NSCLC patients required TLR-stimulating nucleic acid immunoglobulin complexes and could discriminate the responsiveness to chemotherapy, which might provide a novel mechanism by which the proinflammatory immune response was induced and a potential new biomarker for evaluating responsiveness to chemotherapy in NSCLC patients.
    Cancer Cell International 08/2014; 14(1):80. DOI:10.1186/s12935-014-0080-1 · 1.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The serine threonine kinase Akt1 has been implicated in the control of cellular metabolism, survival and growth. Herein, disruption of the ubiquitously expressed member of the Akt family of genes, Akt1, in the mouse, demonstrates a requirement for Akt1 in miRNA-mediated cellular apoptosis. The miR-17/20 cluster is known to inhibit breast cancer cellular proliferation through G1/S cell cycle arrest via binding to the cyclin D1 3'UTR. Here we show that miR-17/20 overexpression sensitizes cells to apoptosis induced by either Doxorubicin or UV irradiation in MCF-7 cells via Akt1. miR-17/20 mediates apoptosis via increased p53 expression which promotes Akt degradation. Akt1-/- mammary epithelial cells which express Akt2 and Akt3 demonstrated increased apoptosis to DNA damaging agents. Akt1 deficiency abolished the miR-17/20-mediated apoptosis. These results demonstrated a novel pathway through which miR17/20 regulate p53 and Akt controlling breast cancer cell apoptosis.
    Oncotarget 03/2014; · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kaposi's sarcoma-associated herpesvirus is the causative agent of primary effusion lymphoma (PEL), which arises preferentially in the setting of infection with human immunodeficiency virus (HIV). Even with standard cytotoxic chemotherapy, PEL continues to cause high mortality rates, requiring the development of novel therapeutic strategies. PEL xenograft models employing immunodeficient mice have been used to study the in vivo effects of a variety of therapeutic approaches. However, it remains unclear whether these xenograft models entirely reflect clinical presentations of KSHV(+) PEL, especially given the recent description of extracavitary solid tumor variants arising in patients. In addition, effusion and solid tumor cells propagated in vivo exhibit unique biology, differing from one another or from their parental cell lines propagated through in vitro culture. Therefore, we used a KSHV(+) PEL/BCBL-1 xenograft model involving non-obese diabetic/severe-combined immunodeficient (NOD/SCID) mice, and compared characteristics of effusion and solid tumors with their parent cell culture-derived counterparts. Our results indicate that although this xenograft model can be used for study of effusion and solid lymphoma observed in patients, tumor cells in vivo display unique features to those passed in vitro, including viral lytic gene expression profile, rate of solid tumor development, the host proteins and the complex of tumor microenvironment. These items should be carefully considered when the xenograft model is used for testing novel therapeutic strategies against KSHV-related lymphoma.
    PLoS ONE 02/2014; 9(2):e90349. DOI:10.1371/journal.pone.0090349 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously showed that L-arginine (Arg) accumulates in colorectal cancer tissues. The aim of this study was to investigate the mechanism by which Arg accumulates and determine its biological significance. The concentration of Arg and Citrulline (Cit) in sera and tumor tissues from colorectal cancer (CRC) patients was analyzed by high-performance liquid chromatography (HPLC). The expression of Arg transporters was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemical analysis of tissue microarray. We also transfected the colon cancer cell line HCT-116 with siRNA specific for the Arg transporter CAT-1 and measured the induction of apoptosis by flow cytometry and cell proliferation by MTT assay. Consistent with our previous results, serum Arg and Cit concentrations in colorectal cancer patients were significantly lower than those in normal volunteers, while Arg and Cit concentrations in colorectal cancer tissues were significantly higher than in matched adjacent normal colon tissues. Quantitative RT-PCR showed that the CAT-1 gene was highly overexpressed in 70.5% of colorectal cancer tissue samples relative to adjacent normal colon tissues in all 122 patients with colorectal cancer. Immunohistochemical analysis of tissue microarray confirmed that the expression of CAT-1 was higher in all 25 colorectal cancer tissues tested. CAT-1 siRNA significantly induced apoptosis of HCT-116 cells and subsequently inhibited cell growth by 20–50%. Our findings indicate that accumulation of L-Arg and Cit and cell growth in colorectal cancer tissues is associated with over-expression of the Arg transporter gene CAT-1. Our results may be useful for the development of molecular diagnostic tools and targeted therapy for colorectal cancer.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously showed that L-arginine (Arg) accumulates in colorectal cancer tissues. The aim of this study was to investigate the mechanism by which Arg accumulates and determine its biological significance. The concentration of Arg and Citrulline (Cit) in sera and tumor tissues from colorectal cancer (CRC) patients was analyzed by high-performance liquid chromatography (HPLC). The expression of Arg transporters was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemical analysis of tissue microarray. We also transfected the colon cancer cell line HCT-116 with siRNA specific for the Arg transporter CAT-1 and measured the induction of apoptosis by flow cytometry and cell proliferation by MTT assay. Consistent with our previous results, serum Arg and Cit concentrations in colorectal cancer patients were significantly lower than those in normal volunteers, while Arg and Cit concentrations in colorectal cancer tissues were significantly higher than in matched adjacent normal colon tissues. Quantitative RT-PCR showed that the CAT-1 gene was highly overexpressed in 70.5% of colorectal cancer tissue samples relative to adjacent normal colon tissues in all 122 patients with colorectal cancer. Immunohistochemical analysis of tissue microarray confirmed that the expression of CAT-1 was higher in all 25 colorectal cancer tissues tested. CAT-1 siRNA significantly induced apoptosis of HCT-116 cells and subsequently inhibited cell growth by 20-50%. Our findings indicate that accumulation of L-Arg and Cit and cell growth in colorectal cancer tissues is associated with over-expression of the Arg transporter gene CAT-1. Our results may be useful for the development of molecular diagnostic tools and targeted therapy for colorectal cancer.
    PLoS ONE 09/2013; 8(9):e73866. DOI:10.1371/journal.pone.0073866 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Emmprin (CD147; basigin) is a multifunctional glycoprotein expressed at higher levels by cancer cells and stromal cells in the tumor microenvironment. Through direct effects within tumor cells and promotion of tumor-stroma interactions, emmprin participates in induction of tumor cell invasiveness, angiogenesis, metastasis and chemoresistance. Although its contribution to cancer progression has been widely studied, the role of emmprin in viral oncogenesis still remains largely unclear, and only a small body of available literature implicates emmprin-associated mechanisms in viral pathogenesis and tumorigenesis. We summarize these data in this review, focusing on the role of emmprin in pathogenesis associated with the Kaposi sarcoma-associated herpesvirus (KSHV), a common etiology for cancers arising in the setting of immune suppression. We also discuss future directions for mechanistic studies exploring roles for emmprin in viral cancer pathogenesis.
    Cancer letters 06/2013; DOI:10.1016/j.canlet.2013.05.037 · 5.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autoimmune hemolytic anemia (AIHA) is defined as the increased destruction of red blood cells (RBCs) in the presence of anti-RBC autoantibodies with or without complement activation. However, the underlying mechanism for the development of AIHA remains largely unclear. In this study, we carefully evaluated the potential role of Th17 cells in the development of AIHA. We found an elevated frequency of Th17 cells in patients with AIHA, which were closely correlated with their disease activity, including the level of anti-RBC IgG antibodies, hemoglobin, serum C3, and lactate dehydrogenase activity. Furthermore, we observed that interleukin (IL)-17 was also closely correlated with the disease activity in AIHA patients. To further elucidate the potential role of Th17 cells in induction of AIHA, we used the Marshall-Clarke and Playfair model of murine AIHA. Notably, we found that Th17 cells affected development of AIHA by enhancing the adaptive humoral responses. Specifically, we found that adoptive transfer of Th17 cells heightened the initial anti-rat RBC antibody responses and concomitantly increased the onset of AIHA. In addition, in vivo neutralization of IL-17 abrogated the development of AIHA, while initiation of anti-rat RBC IgG responses and induction of AIHA in IL-17(-/-) mice were impaired. Our findings suggest that Th17 cells contribute to the development of AIHA, which could facilitate our better understanding of AIHA pathogenesis and provide clues to developing novel forms of immunotherapy against AIHA.
    Experimental hematology 09/2012; 40(12). DOI:10.1016/j.exphem.2012.08.008 · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The acute respiratory distress syndrome (ARDS), a clinical complication of severe acute lung injury (ALI) in humans, is a leading cause of morbidity and mortality in critically ill patients. Despite decades of research, few therapeutic strategies for clinical ARDS have emerged. Here we carefully evaluated the effect of progranulin (PGRN) in treatment of ARDS using the murine model of lipopolysaccharide (LPS)-induced ALI. We reported that administration of PGRN maintained the body weight and survival of ALI mice. We revealed that administration of PGRN significantly reduced LPS-induced pulmonary inflammation, as reflected by reductions in total cell and neutrophil counts, proinflammatory cytokines, as well as chemokines in bronchoalveolar lavage (BAL) fluid. Furthermore, administration of PGRN resulted in remarkable reversal of LPS-induced increases in lung permeability as assessed by reductions in total protein, albumin, and IgM in BAL fluid. Consistently, we revealed a significant reduction of histopathology changes of lung in mice received PGRN treatment. Finally, we showed that PGRN/TNFR2 interaction was crucial for the protective effect of PGRN on the LPS-induced ALI. Our findings strongly demonstrated that PGRN could effectively ameliorate the LPS-induced ALI in mice, suggesting a potential application for PGRN-based therapy to treat clinical ARDS.
    Mediators of Inflammation 08/2012; 2012:540794. DOI:10.1155/2012/540794 · 2.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-mobility group box 1 (HMGB1) has been implicated in a variety of biologically important processes, including transcription, DNA repair, differentiation, development, and extracellular signaling. However, the potential role of HMGB1 in tumor biology still remains intractable. Our previous study showed that TLR9 response to CpG oligonucleotide (ODN) in 95D human lung cancer cells could enhance their growth and invasive potential in vitro and in vivo. Here we found that CpG ODN stimulation to 95D cells induced the secretion of HMGB1 in a dose dependent manner. We further showed that blockade of extracellular HMGB1 using A box peptide and ethyl pyruvate significantly abrogated the CpG ODN enhanced progression of 95D cells. Interestingly, we found that HMGB1 alone or acted synergistic with CpG ODN could enhance the progression of 95D cells. Notably, we revealed that RAGE and TLR4 were critical for HMGB1 to exert the synergistic function. We observed a MyD88-dependent upregulation of matrix metalloproteinase (MMP) 2, MMP9 and cyclin-dependent kinase (CDK) 2 in 95D cells in response to HMGB1. These findings might further our understanding of TLR9 signaling in tumor biology and be helpful for developing HMGB1-based strategy against lung cancer.
    Cancer biology & therapy 07/2012; 13(9):727-36. DOI:10.4161/cbt.20555 · 3.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological studies have demonstrated a close correlation between nickel exposure and the incidence of lung cancer. Several studies have suggested that nickel contributes to tumor progression of human lung cancer. In this in vitro study, we found that nickel, as nickel chloride, could significantly enhance the invasive potential of human lung cancer cells, accompanied by elevated expression of IL-8, TGF-β, MMP2 and MMP9 in human lung cancer cells. Importantly, we demonstrated that nickel could activate TLR4 signaling in human lung cancer cells. Further studies showed that the TLR4/MyD88 signaling conferred the enhanced invasive potential of human lung cancer cells induced by nickel. Finally, we revealed that the p38MAPK pathway and NF-kB pathway were necessary for the enhanced invasive potential of human lung cancer cells induced by nickel. Our data provide a mechanistic explanation for nickel induced invasion of human lung cancer, and they suggest new strategies for nickel-related lung cancer clinical biotherapies.
    Toxicology 07/2011; 285(1-2):25-30. DOI:10.1016/j.tox.2011.03.016 · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adoptive cell transfer immunotherapy using tumor infiltrating lymphocytes (TILs) was an important therapeutic strategy against tumors. But the efficacy remains limited and development of new strategies is urgent. Recent evidence suggested that CpG-ODNs might be a potent candidate for tumor immunotherapy. Here we firstly reported that CpG-ODNs could significantly enhance the antitumor efficacy of adoptively transferred TILs in vivo accompanied by enhanced activity capacity and proliferation of CD8(+) T cells and CD8(+) T cells, as well as a Th1 polarization immune response. Most importantly, we found that CpG-ODNs could significantly elevate the infiltration of Th17 cells in tumor mass, which contributed to anti-tumor efficacy of TILs in vivo. Our findings suggested that CpG ODNs could enhance the anti-tumor efficacy of adoptively transferred TILs through modifying Th1 polarization and local infiltration of Th17 cells, which might provide a clue for developing a new strategy for ACT based on TILs.
    Clinical and Developmental Immunology 10/2010; 2010:410893. DOI:10.1155/2010/410893 · 2.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although immune reactions against heat shock proteins have been implicated in the pathogenesis of atherosclerosis, conflicting associations between Hsp70, anti-Hsp70 antibody and coronary heart disease (CHD) have been reported. This study assessed whether there is a significant association between extracellular human Hsp70, anti-Hsp70 antibody and acute coronary syndrome (ACS) and stable angina (SA), and examined dynamic changes in Hsp70 and anti-Hsp70 antibody levels induced by acute myocardial infarction (AMI). Plasma Hsp70 and anti-Hsp70 antibody levels in 291 patients with ACS (179 AMI, 112 unstable angina), 126 patients with SA and 417 age and sex-matched healthy subjects, and in 40 patients after admission for AMI, and on day 2, 3, and 7 after the onset of AMI were determined using enzyme-linked immunosorbent assays. Hsp70 levels were significantly higher in ACS and SA and anti-Hsp70 antibody levels were only markedly lower in ACS than controls. After adjustment for traditional CHD risk factors, increasing levels of Hsp70 were significantly associated with an increased risk and severity of ACS (P for trend < 0.001), whereas increasing levels of anti-Hsp70 antibody were associated with a decreased risk of ACS (P for trend = 0.0003). High levels of Hsp70 combined with low levels of anti-Hsp70 antibody had a joint effect on the risk of ACS (OR, 5.14, 95% CI, 3.00-8.79; P < 0.0001). In patients with AMI, Hsp70 levels decreased rapidly from days 1-7 after onset, whereas anti-Hsp70 antibody levels increased in patients with AMI. These findings suggest that higher Hsp70 levels or lower anti-Hsp70 antibody levels are independently associated with a higher risk of ACS. Higher Hsp70 levels and lower anti-Hsp70 antibody levels combine to further increase this risk.
    Cell Stress and Chaperones 03/2010; 15(5):675-86. DOI:10.1007/s12192-010-0180-3 · 2.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating data suggested that functional TLR9 was expressed in various tumor cells and TLR9 signaling could enhance the progression of tumor cells. However, the underlying mechanism of TLR9 signaling on the progression of tumors cells remains largely undefined. Our previous study demonstrated that the TLR9 agonist CpG ODNs could significantly enhance the progression of human lung cancer cells in vivo. Here we further evaluated the direct effect of CpG ODNs on the proliferation and cell cycle of human lung cancer cells. Our data showed that TLR9 agonist CpG ODNs could robustly elevate the proliferation and stimulate cell cycle entry of 95D cells in vitro, accompanied by the selectively up-regulated expression of CDK2. Furthermore, we found that down-regulation of CDK2 expression using siRNA against CDK2 could significantly inhibit the enhanced proliferation of 95D cells induced by CpG ODNs. Finally, we investigated that the CpG ODNs could selectively enhance the promoter activity of CDK2. Our findings indicated that TLR9 signaling could selectively up-regulate the expression of CDK2, which was critical for the enhanced proliferation of human lung cancer cells. Our results might provide novel insight into the understanding of functional expression of TLR9 on the progression of tumor cells.
    Immunology letters 10/2009; 127(2):93-9. DOI:10.1016/j.imlet.2009.10.002 · 2.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High levels of circulating heat shock protein 60 (Hsp60) and antibody to human Hsp60 have been associated with greater risk of coronary heart disease (CHD) in several studies, but associations between polymorphisms of the hsp60 gene and CHD risk have not been investigated. By resequencing DNA from 30 unrelated Han Chinese and using HapMap Phase I Chinese data of hsp60 gene, we selected four tagging single nucleotide polymorphisms (tagSNPs) named rs2340690, rs788016, rs2305560, and rs2565163, and determined their frequencies in 1,003 Chinese CHD patients and 1,003 age- and sex-frequency-matched controls. Furthermore, we used PHASE 2.0 software to reconstruct haplotypes and logistic regression to control for potential confounders in multivariate analyses. We found 13 SNPs in hsp60 gene (including four novel SNPs) in Han Chinese subjects. Our results showed no significant differences in four selected SNPs in patients with CHD and controls after adjusting for other conventional risk factors and stratifying by age, sex, smoking status, past history of hypertension and DM; however, our results showed that subjects with the GCTC haplotype had about twofold higher risk of CHD than those with the GTTC haplotype (OR = 1.91, 95%CI: 1.26-2.89, P = 0.002). Our results suggest that the GCTC haplotype in the hsp60 gene is significantly associated with higher CHD risk in a Chinese population.
    Cell Stress and Chaperones 04/2008; 13(2):231-8. DOI:10.1007/s12192-008-0025-5 · 2.54 Impact Factor

Publication Stats

105 Citations
43.67 Total Impact Points

Institutions

  • 2012–2014
    • Tongji Medical University
      • Department of Pathology
      Shanghai, Shanghai Shi, China
  • 2009–2014
    • Tongji University
      Shanghai, Shanghai Shi, China
  • 2008–2011
    • Huazhong University of Science and Technology
      • School of Public Health
      Wu-han-shih, Hubei, China