K. Kazkaz

Lawrence Livermore National Laboratory, Livermore, California, United States

Are you K. Kazkaz?

Claim your profile

Publications (89)162.66 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Coherent elastic neutrino-nucleus scattering (CENNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. Detection of CENNS could offer benefits for detection of supernova and solar neutrinos in astrophysics, or for detection of antineutrinos for nuclear reactor monitoring and nuclear nonproliferation. One challenge with detecting CENNS is the low energy deposition associated with a typical CENNS nuclear recoil. In addition, nuclear recoils result in lower ionization yields than those produced by electron recoils of the same energy. While a measurement of the nuclear recoil ionization yield in liquid argon in the keV energy range has been recently reported, a corresponding model for low-energy ionization yield in liquid argon does not exist. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The model consists of two distinct components: (1) simulation of the atomic collision cascade with production of ionization, and (2) the thermalization and drift of ionization electrons in an applied electric field including local recombination. As an application of our results we report updated estimates of detectable ionization in liquid argon from CENNS at a nuclear reactor.
    Astroparticle Physics 03/2015; 69. DOI:10.1016/j.astropartphys.2015.03.005 · 4.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, the CUORE (Cryogenic Underground Observatory for Rare Events) experiment aims at searching for neutrinoless double beta decay of 130Te with unprecedented sensitivity. Expected to start data taking in 2015, CUORE is currently in an advanced construction phase at LNGS. CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6E26 y at 1 sigma (9.5E25 y at the 90% confidence level), in five years of live time, corresponding to an upper limit on the effective Majorana mass in the range 40-100 meV (50-130 meV). Further background rejection with auxiliary bolometric detectors could improve CUORE sensitivity and competitiveness of bolometric detectors towards a full analysis of the inverted neutrino mass hierarchy. CUORE-0 was built to test and demonstrate the performance of the upcoming CUORE experiment. It consists of a single CUORE tower (52 TeO2 bolometers of 750 g each, arranged in a 13 floor structure) constructed strictly following CUORE recipes both for materials and assembly procedures. An experiment its own, CUORE-0 is expected to reach a sensitivity to the neutrinoless double beta decay half-life of 130Te around 3E24 y in one year of live time. We present an update of the data, corresponding to an exposure of 18.1 kg y. An analysis of the background indicates that the CUORE performance goal is satisfied while the sensitivity goal is within reach.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an updated model of light and charge yields from nuclear recoils in liquid xenon with a simultaneously constrained parameter set. A global analysis is performed using measurements of electron and photon yields compiled from all available historical data, as well as measurements of the ratio of the two. These data sweep over energies from 1 - 300 keV and external applied electric fields from 0 - 4060 V/cm. The model is constrained by constructing global cost functions and using a gradient descent minimizer, a simulated annealing algorithm, and a Markov Chain Monte Carlo approach to optimize and find confidence intervals on all free parameters in the model. This analysis contrasts with previous work in that we do not unnecessarily exclude data sets nor impose artificially conservative assumptions, do not use spline functions, and reduce the number of parameters used in NEST v0.98. We report our results and the calculated best-fit charge and light yields. These quantities are crucial to understanding the response of liquid xenon detectors in the energy regime important for rare event searches such as the direct detection of dark matter particles.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Cryogenic Underground Observatory for Rare Events (CUORE) is an experiment to search for neutrinoless double beta decay ($0\nu\beta\beta$) in $^{130}$Te and other rare processes. CUORE is a cryogenic detector composed of 988 TeO$_2$ bolometers for a total mass of about 741 kg. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts/(keV$\cdot$kg$\cdot$y) will be reached, in five years of data taking CUORE will have an half life sensitivity around $1\times 10^{26}$ y at 90\% C.L. As a first step towards CUORE a smaller experiment CUORE-0, constructed to test and demonstrate the performances expected for CUORE, has been assembled and is running. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013. The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented.
  • Source
    G. C. Rich · K. Kazkaz · H. P. Martinez · T. Gushue
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel composite, scintillating material intended for neutron detection and composed of small (1.5 mm) cubes of KG2-type lithium glass embedded in a matrix of scintillating plastic has been developed in the form of a 2.2"-diameter, 3.1"-tall cylindrical prototype loaded with $(5.82 \pm 0.02)%$ lithium glass by mass. The response of the material when exposed to ${}^{252}$Cf fission neutrons and various $\gamma$-ray sources has been studied; using the charge-integration method for pulse shape discrimination, good separation between neutron and $\gamma$-ray events is observed and intrinsic efficiencies of $(5.88 \pm 0.78)\times 10^{-3}$ and $(7.80 \pm 0.77)\times 10^{-5}$ for ${}^{252}$Cf fission neutrons and ${}^{60}$Co $\gamma$ rays are obtained; an upper limit for the sensitivity to ${}^{137}$Cs $\gamma$ rays is determined to be $< 3.70 \times 10^{-8}$. The neutron/$\gamma$ discrimination capabilities are improved in circumstances when a neutron capture signal in the lithium glass can be detected in coincidence with a preceding elastic scattering event in the plastic scintillator; with this coincidence requirement, the intrinsic efficiency of the prototype detector for ${}^{60}$Co $\gamma$ rays is $(9.65 \pm 4.07)\times 10^{-7}$ while its intrinsic efficiency for unmoderated ${}^{252}$Cf fission neutrons is $(2.21 \pm 0.29)\times 10^{-3}$. Through use of subregion-integration ratios in addition to the coincidence requirement, the efficiency for $\gamma$ rays from ${}^{60}$Co is reduced to $(2.56 \pm 3.15) \times 10^{-7}$ while the ${}^{252}$Cf fission neutron efficiency becomes $(1.63 \pm 0.22) \times 10^{-3}$.
    Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 10/2014; 794. DOI:10.1016/j.nima.2015.05.004 · 1.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of $^{130}$Te. With 741 kg of TeO$_2$ crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is $1.6\times 10^{26}$ y at $1\sigma$ ($9.5\times10^{25}$ y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40--100 meV (50--130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with $^{130}$Te and possibly other double beta decay candidate nuclei.
  • 2014 Symposium on Radiation Measurements and Applications (SORMA XV), University of Michigan Ann Arbor, MI; 06/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neutrinoless double beta decay (0nubb) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0nubb decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric 0nubb experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capable of reaching the sensitivity to the effective Majorana neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. We highlight the main challenges and identify priorities for an R&D program addressing them.
    European Physical Journal C 04/2014; 74(10). DOI:10.1140/epjc/s10052-014-3096-8 · 5.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Detailed understanding of the ionization process in noble liquid detectors is important for their use in applications such as the search for dark matter and coherent elastic neutrino-nucleus scattering. The response of noble liquid detectors to low-energy ionization events is poorly understood at this time. We describe a new simulation tool which predicts the ionization yield from electronic energy deposits (E < 10keV) in liquid Ar, including the dependence of the yield on the applied electric drift field. The ionization signal produced in a liquid argon detector from $^{37}$Ar beta decay and $^{55}$Fe X-rays has been calculated using the new model.
    Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 03/2014; 771. DOI:10.1016/j.nima.2014.10.055 · 1.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6×10-46 cm2 at a WIMP mass of 33 GeV/c2. We find that the LUX data are in disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.
    Physical Review Letters 03/2014; 112(9):091303. DOI:10.1103/PhysRevLett.112.091303 · 7.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Large Underground Xenon (LUX) dark matter experiment aims to detect rare low-energy interactions from Weakly Interacting Massive Particles (WIMPs). The radiogenic backgrounds in the LUX detector have been measured and compared with Monte Carlo simulation. Measurements of LUX high-energy data have provided direct constraints on all background sources contributing to the background model. The expected background rate from the background model for the 85.3 day WIMP search run is $(2.6\pm0.2_{\textrm{stat}}\pm0.4_{\textrm{sys}})\times10^{-3}$~events~keV$_{ee}^{-1}$~kg$^{-1}$~day$^{-1}$ in a 118~kg fiducial volume. The observed background rate is $(3.6\pm0.4_{\textrm{stat}})\times10^{-3}$~events~keV$_{ee}^{-1}$~kg$^{-1}$~day$^{-1}$, consistent with model projections. The expectation for the radiogenic background in a subsequent one-year run is presented.
    Astroparticle Physics 03/2014; 62. DOI:10.1016/j.astropartphys.2014.07.009 · 4.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Detailed understanding of the ionization process in noble liquid detectors is important for their use in applications such as the search for dark matter and coherent elastic neutrino-nucleus scattering. The response of noble liquid detectors to low-energy ionization events is poorly understood at this time. We describe a new simulation tool which predicts the ionization yield from electronic energy deposits (E < 10keV) in liquid Ar, including the dependence of the yield on the applied electric drift field. The ionization signal produced in a liquid argon detector from $^{37}$Ar beta decay and $^{55}$Fe X-rays has been calculated using the new model.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neutrinoless double-beta ($0\nu\beta\beta$) decay is a hypothesized lepton-number-violating process that offers the only known means of asserting the possible Majorana nature of neutrino mass. The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for $0\nu\beta\beta$ decay of $^{130}$Te using an array of 988 TeO$_2$ crystal bolometers operated at 10 mK. The detector will contain 206 kg of $^{130}$Te and have an average energy resolution of 5 keV; the projected $0\nu\beta\beta$ decay half-life sensitivity after five years of live time is $1.6\times 10^{26}$ y at $1\sigma$ ($9.5\times10^{25}$ y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40--100 meV (50--130 meV). In this paper we review the experimental techniques used in CUORE as well as its current status and anticipated physics reach.
    Advances in High Energy Physics 02/2014; DOI:10.1155/2015/879871 · 2.62 Impact Factor
  • Source
    Article: 1402.6072v1
    [Show abstract] [Hide abstract]
    ABSTRACT: Neutrinoless double-beta (0νββ) decay is a hypothesized lepton-number-violating process that offers the only known means of asserting the possible Majorana nature of neutrino mass. The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for 0νββ decay of 130Te using an array of 988 TeO2 crystal bolometers operated at 10 mK. The detector will contain 206 kg of 130Te and have an average energy resolution of 5 keV; the projected 0νββ decay half-life sensitivity after five years of live time is 1.6e26 y at 1σ (9.5e25 y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40--100 meV (50--130 meV). In this paper we review the experimental techniques used in CUORE as well as its current status and anticipated physics reach.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LUX, the world's largest dual-phase xenon time-projection chamber, with a fiducial target mass of 118 kg and 10,091 kg-days of exposure thus far, is currently the most sensitive direct dark matter search experiment. The initial null-result limit on the spin-independent WIMP-nucleon scattering cross-section was released in October 2013, with a primary scintillation threshold of 2 phe, roughly 3 keVnr for LUX. The detector has been deployed at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, and is the first experiment to achieve a limit on the WIMP cross-section lower than $10^{-45}$ cm$^{2}$. Here we present a more in-depth discussion of the novel energy scale employed to better understand the nuclear recoil light and charge yields, and of the calibration sources, including the new internal tritium source. We found the LUX data to be in conflict with low-mass WIMP signal interpretations of other results.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay in \(^{130}\) Te. Observation of the process would unambiguously establish that neutrinos are Majorana particles as well as provide information about the absolute neutrino mass scale and mass hierarchy.The CUORE setup will consist of an array of 988 tellurium dioxide crystals (containing 206 kg of \(^{130}\) Te in total), operated as bolometers at a temperature of \(\sim \) 10 mK. The experiment is now under construction at the Gran Sasso National Laboratory in Italy. As a first step towards CUORE, a tower (CUORE-0) has been assembled and is taking data. Here a detailed description of the CUORE-0 tower and its performance is reported. The status of the CUORE experiment and its expected sensitivity will then be discussed.
    Journal of Low Temperature Physics 02/2014; 176(5-6). DOI:10.1007/s10909-014-1094-8 · 1.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This Letter details a measurement of the ionization yield ($Q_y$) of 6.7 keV $^{40}Ar$ atoms stopping in a liquid argon detector. The $Q_y$ of 3.6-6.3 detected $e^{-}/\mbox{keV}$, for applied electric fields in the range 240--2130 V/cm, is encouraging for the use of this detector medium to search for the signals from hypothetical dark matter particle interactions and from coherent elastic neutrino nucleus scattering. A significant dependence of $Q_y$ on the applied electric field is observed and explained in the context of ion recombination.
    Physical Review Letters 02/2014; 112(17). DOI:10.1103/PhysRevLett.112.171303 · 7.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CUORE-0 is a cryogenic detector that uses an array of tellurium dioxide bolometers to search for neutrinoless double-beta decay of ^{130}Te. We present the first data analysis with 7.1 kg y of total TeO_2 exposure focusing on background measurements and energy resolution. The background rates in the neutrinoless double-beta decay region of interest (2.47 to 2.57 MeV) and in the {\alpha} background-dominated region (2.70 to 3.90 MeV) have been measured to be 0.071 \pm 0.011 and 0.019 \pm 0.002 counts/keV/kg/y, respectively. The latter result represents a factor of 6 improvement from a predecessor experiment, Cuoricino. The results verify our understanding of the background sources in CUORE-0, which is the basis of extrapolations to the full CUORE detector. The obtained energy resolution (full width at half maximum) in the region of interest is 5.7 keV. Based on the measured background rate and energy resolution in the region of interest, CUORE-0 half-life sensitivity is expected to surpass the observed lower bound of Cuoricino with one year of live time.
    European Physical Journal C 02/2014; 74(8). DOI:10.1140/epjc/s10052-014-2956-6 · 5.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A comprehensive model for describing the characteristics of pulsed signals, generated by particle interactions in xenon detectors, is presented. An emphasis is laid on two-phase time projection chambers, but the models presented are also applicable to single phase detectors. In order to simulate the pulse shape due to primary scintillation light, effects such as the ratio of singlet and triplet dimer state populations, as well as their corresponding decay times, and the recombination time are incorporated into the model. In a two phase time projection chamber, when simulating the pulse caused by electroluminescence light, parameters such as ionization electron mean free path in gas, the drift velocity, singlet and triplet decay times, diffusion constants, and the electron trapping time, have been implemented. This modeling has been incorporated into a complete software package, which realistically simulates the expected pulse shapes for these types of detectors.
    Journal of Instrumentation 10/2013; 9(04). DOI:10.1088/1748-0221/9/04/T04002 · 1.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the results of a search for axions from the 14.4 keV M1 transition from Fe-57 in the core of the sun using the axio-electric e?ect in TeO2 bolometers. The detectors are 5x5x5 cm3 crystals operated at about 10 mK in a facility used to test bolometers for the CUORE experiment at the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 43.65 kg d of data was made using a newly developed low energy trigger which was optimized to reduce the detectors energy threshold. An upper limit of 0.63 c kg-1 d-1 was established at 95% C.L.. From this value, a lower bound at 95% C.L. was placed on the Peccei-Quinn energy scale of fa >= 0.76 10**6 GeV for a value of S=0.55 for the flavor-singlet axial vector matrix element. Bounds are given for the interval 0.15 < S < 0.55.
    Journal of Cosmology and Astroparticle Physics 07/2013; 2013(05):007. DOI:10.1088/1475-7516/2013/05/007 · 5.88 Impact Factor

Publication Stats

2k Citations
162.66 Total Impact Points

Institutions

  • 2008–2015
    • Lawrence Livermore National Laboratory
      Livermore, California, United States
  • 2011
    • University of California, Santa Barbara
      • Department of Physics
      Santa Barbara, California, United States
    • University of Zaragoza
      Caesaraugusta, Aragon, Spain
  • 2002–2011
    • University of Washington Seattle
      • • Department of Physics
      • • Center for Experimental Nuclear Physics and Astrophysics
      Seattle, Washington, United States
  • 2003
    • Queen's University
      Kingston, Ontario, Canada