Are you Daniel Bacqueville?

Claim your profile

Publications (5)6.48 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The biotransformation of chemicals by the skin can be a critical determinant of systemic exposure in humans following dermal absorption. Pig ear skin, which closely resembles human skin, is a candidate ex vivo alternative model for the investigation of xenobiotics penetration and metabolism. We developed an ex vivo pig ear skin model and explored its absorption, diffusion and metabolic capabilities using the model compound (14)C-ethoxycoumarin (7-EC). Experimentations were undertaken on pig ear skin explants after application of various (14)C-EC doses. Diffusion was quantified as well as the production of 7-EC metabolites resulting from phases I and II enzyme activities, using radio-HPLC. After 48h, most of the radioactivity was absorbed and was recovered in culture media (70%) or in the skin itself (10%). 7-EC metabolites were identified as 7-hydroxycoumarin (OH-C) and the corresponding sulfate (S-O-C) and glucuronide (G-O-C) conjugates. Their formation followed Michaelis-Menten kinetics with saturation reached around 100 microM of 7-EC. Results demonstrate that dermal absorption as well as phases I and II enzymatic activities of pig skin are both functional. This model should represent a valuable alternative for the study of the transdermal exposure to chemicals, combining a functional dermal barrier and active biotransformation capabilities.
    Toxicology in Vitro 08/2010; 24(5):1426-34. · 2.65 Impact Factor
  • D Bacqueville, A Mavon
    [Show abstract] [Hide abstract]
    ABSTRACT: Reconstructed human epidermis models (RHE) constitute an innovative alternative to study phototoxicity and photoprotection in the cosmetic industry. However, little information is currently available concerning the harmful effects of solar-simulated radiation (SSR) in these in vitro skin models. In this study, the phototoxic effects of a single acute SSR dose of 275 kJ m(-2) were evaluated in a validated RHE model (from SkinEthic), and were compared with those obtained from an ex vivo skin organ culture recently developed from domestic pig ears. The RHE model was well differentiated in vitro and released a significant level of the cytosolic enzymes lactate dehydrogenase (LDH) and extracellular signal-related kinase 2 (ERK2) protein in the culture medium 24 h after SSR exposure. The SSR-induced cytotoxicity was related to the formation of sunburn cells and the appearance of DNA damage (thymine dimer and DNA fragmentation) in keratinocytes. Interestingly, these DNA alterations were associated with the activation of the caspase-3 protease, mainly in the basal layers of the epidermis. In addition, the RHE model responses were comparable with porcine skin following solar irradiation, and none of the above cellular responses was observed in non-irradiated skin models. Finally, topical application of a broad-spectrum UVB + A sunscreen formulation efficiently protected both the RHE and pig skin against the deleterious effects of SSR. Thus, both RHE and ex vivo pig skin organ culture models are complementary tools in the assessment of SSR-induced DNA damage and apoptosis, and they may be used to evaluate the photoprotective capacity of cosmetic formulations.
    International journal of cosmetic science 06/2009; 31(4):293-302.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human body is perpetually subjected to environmental exposures as sun, natural, urban or industrial pollutions and societal exposures. Skin is the main physiological barrier facing to these different stresses; however its response mechanisms are still not well understood. Skin models are thus necessary to understand skin physiology and behavior in normal conditions or under stress. Because of the large natural interindividual variability and of some difficulties in obtaining human skin biopsies, we have been developing and characterizing different skin models such as reconstructed epidermis in vitro, native pigskin and human keratinocyte cells. These models allow us to study the mechanisms involved in ion homeostasis in correlation with structural organization and biological responses. In the present study, we have characterized the pig ear skin model using micro-particle induced x-ray emission (PIXE) analysis with the aim of evaluating the distribution of inorganic ions under normal or stress conditions together with the transepidermal penetration of external agents, such as aluminum oxides. The nuclear microprobe analysis allowed us to validate the culture conditions of the tissue and we have shown an alteration of the inorganic ion patterns after exposure to a chemical compound (sodium dodecyl sulfate) known for its deleterious effects on the barrier function. Finally, we have shown no transepidermal penetration of aluminum oxides after different exposures to cosmetic formulations. Copyright © 2009 John Wiley & Sons, Ltd.
    X-Ray Spectrometry 01/2009; 38(2):132 - 137. · 1.55 Impact Factor
  • Daniel Bacqueville, Alain Mavon, Hélène Duplan
    Toxicology Letters - TOXICOL LETT. 01/2009; 189.
  • Daniel Bacqueville, Alain Mavon
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, a convenient and easy-to-handle skin organ culture was developed from domestic pig ears using polycarbonate Transwell culture inserts in 12-well plate. This alternative model was then tested for its suitability in analyzing the short-term effects of a single solar radiation dose (from 55 to 275 kJ.m(-2)). Differentiation of the pig skin was maintained for up to 48 h in culture, and its morphology was similar to that of fresh human skin. Solar irradiation induced a significant release of the cytosolic enzymes lactate dehydrogenase and extracellular signal-related kinase 2 protein in the culture medium 24 h after exposure. These photocytotoxic effects were associated with the formation of sunburn cells, thymine dimers and DNA strand breaks in both the epidermis and dermis. Interestingly, cell death was dose dependent and associated with p53 protein upregulation and strong caspase-3 activation in the basal epidermis. None of these cellular responses was observed in non-irradiated skin. Finally, topical application of a broad-spectrum UVB + A sunfilter formulation afforded efficient photoprotection in irradiated explants. Thus, the ex vivo pig ear skin culture may be a useful tool in the assessment of solar radiation-induced DNA damage and apoptosis, and for evaluating the efficacy of sunscreen formulations.
    Photochemistry and Photobiology 03/2008; 84(5):1164-71. · 2.29 Impact Factor