Yongjun Li

University of Florida, Gainesville, Florida, United States

Are you Yongjun Li?

Claim your profile

Publications (1)11.44 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The series of platinum acetylide oligomers (PAOs) with the general structure trans,trans-[(RO)3Ph-C[triple bond]C-Pt(PMe3)2-C[triple bond]C-(Ar)-C[triple bond]C-Pt(PMe3)2-C[triple bond]C-Ph(OR)3], where Ar = 1,4-phenylene, 2,5-thienylene, or bis-2,5-(S-2-methylbutoxy)-1,4-phenylene and R = n-C12H25 gel hydrocarbon solvents at concentrations above 1 mM. Gelation is thermally reversible (T(gel-sol) approximately 40-50 degrees C), and it occurs due to aggregation of the PAOs resulting in the formation of a fibrous network that is observed for dried gels imaged by TEM. The influence of aggregation/gelation on the photophysical properties of the PAOs is explored in detail. Aggregation induces a significant blue shift in the oligomers' absorption spectra, and the shift is attributed to exciton interactions arising from H-aggregation of the chromophores. Strong circular dichroism (CD) is observed for gelled solutions of a PAO substituted with homochiral S-2-methylbutoxy side chains on the central phenylene unit. The CD is attributed to formation of a chiral supramolecular aggregate structure. The PAOs are phosphorescent at ambient temperature in solution and in the aggregate/gel state. The phosphorescence band is blue-shifted ca. 20 nm in the aggregate/gel, and the shift is assigned to emission from an unrelaxed conformation of the triplet excited state. Phosphorescence spectroscopy of mixed aggregate/gels consisting of a triplet donor/host oligomer (Ar = 1,4-phenylene) doped with low concentrations of an acceptor/trap oligomer (Ar = 2,5-thienylene) indicates that energy transfer occurs efficiently in the aggregates. Triplet energy transfer involves exciton diffusion among the host chromophores followed by Dexter exchange energy transfer to the trap chromophore.
    Journal of the American Chemical Society 03/2008; 130(8):2535-45. DOI:10.1021/ja0765316 · 11.44 Impact Factor

Publication Stats

79 Citations
11.44 Total Impact Points


  • 2008
    • University of Florida
      • Department of Chemistry
      Gainesville, Florida, United States