E. van Kampen

European Southern Observatory, Arching, Bavaria, Germany

Are you E. van Kampen?

Claim your profile

Publications (144)351.23 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Galaxy And Mass Assembly (GAMA) survey is one of the largest contemporary spectroscopic surveys of low-redshift galaxies. Covering an area of ~286 deg^2 (split among five survey regions) down to a limiting magnitude of r < 19.8 mag, we have collected spectra and reliable redshifts for 238,000 objects using the AAOmega spectrograph on the Anglo-Australian Telescope. In addition, we have assembled imaging data from a number of independent surveys in order to generate photometry spanning the wavelength range 1 nm - 1 m. Here we report on the recently completed spectroscopic survey and present a series of diagnostics to assess its final state and the quality of the redshift data. We also describe a number of survey aspects and procedures, or updates thereof, including changes to the input catalogue, redshifting and re-redshifting, and the derivation of ultraviolet, optical and near-infrared photometry. Finally, we present the second public release of GAMA data. In this release we provide input catalogue and targeting information, spectra, redshifts, ultraviolet, optical and near-infrared photometry, single-component S\'ersic fits, stellar masses, H$\alpha$-derived star formation rates, environment information, and group properties for all galaxies with r < 19.0 mag in two of our survey regions, and for all galaxies with r < 19.4 mag in a third region (72,225 objects in total). The database serving these data is available at http://www.gama-survey.org/.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.
    The Astrophysical Journal Letters 04/2015; · 5.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present initial results of very high resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations of the $z$=3.042 gravitationally lensed galaxy HATLAS J090311.6+003906 (SDP.81). These observations were carried out using an extended configuration as part of Science Verification for the 2014 ALMA Long Baseline Campaign, with baselines of up to 15 km. We present continuum imaging at 151, 236 and 290 GHz, at angular resolutions as fine as 23 milliarcseconds (mas; corresponding to an un-magnified spatial scale of 180 pc at z=3.042). The ALMA images clearly show two main gravitational arc components with emission tracing a radius of 1.5". We also present imaging of CO(10-9), CO(8-7), CO(5-4) and H2O line emission. The CO data has an angular resolution of 170 mas and the emission is found to broadly trace the gravitational arc structures. We detect H2O line emission but only using the shortest baselines. The ALMA continuum and spectral line fluxes are consistent with previous Plateau de Bure Interferometer and Submillimeter Array observations despite the increase in angular resolution. Finally, we detect weak unresolved continuum emission at all three observed frequencies from a position that is spatially coincident with the centre of the foreground lensing galaxy.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a technique to robustly select high-z (>4) dusty, massive, star forming galaxies using far-IR Herschel/SPIRE data. Follow up of the first handful of sources has proven this technique to be both efficient and reliable, yet the existence of these sources is emphatically not predicted by current models. mm spectroscopy of the first few sources has confirmed that they predominantly lie above z > 4, including one source at z=6.34, the current highest redshift for luminous dusty star forming galaxies. To constrain the stellar masses and populations of these extreme galaxies, IRAC is required. Here we propose IRAC imaging of 31 Herschel/SPIRE high-z candidates selected from the HerMES and Herschel-ATLAS surveys to: 1) provide a complete census of star formation and stellar populations, and 2) contribute to the identification of LBG sources associated with the large scale structures that host these dusty starbursts.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present high-resolution (0.3'') ALMA 870um imaging of 52 sub-millimeter galaxies (SMGs) in the Ultra Deep Survey (UDS) field and investigate the size and morphology of the sub-millimeter (sub-mm) emission on 2-10kpc scales. We derive a median intrinsic angular size of FWHM=0.30$\pm$0.04'' for the 23 SMGs in the sample detected at a signal-to-noise ratio (SNR) >10. Using the photometric redshifts of the SMGs we show that this corresponds to a median physical half-light diameter of 2.4$\pm$0.2kpc. A stacking analysis of the SMGs detected at an SNR <10 shows they have sizes consistent with the 870um-bright SMGs in the sample. We compare our results to the sizes of SMGs derived from other multi-wavelength studies, and show that the rest-frame ~250um sizes of SMGs are consistent with studies of resolved 12CO (J=3-2 to 7-6) emission lines, but that sizes derived from 1.4GHz imaging appear to be approximately two times larger on average, which we attribute to cosmic ray diffusion. The rest-frame optical sizes of SMGs are around four times larger than the sub-millimeter sizes, indicating that the star formation in these galaxies is compact relative to the pre-existing stellar distribution. The size of the starburst region in SMGs is consistent with the majority of the star formation occurring in a central region, a few kpc in extent, with a median star formation rate surface density of 90$\pm$30Msol/yr/kpc$^2$, which may suggest that we are witnessing an intense period of bulge growth in these galaxies.
    The Astrophysical Journal 11/2014; 799(1). DOI:10.1088/0004-637X/799/1/81 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use a highly complete subset of the GAMA-II redshift sample to fully describe the stellar mass dependence of close-pairs and mergers between 10^8 Msun and 10^12 Msun. Using the analytic form of this fit we investigate the total stellar mass accreting onto more massive galaxies across all mass ratios. Depending on how conservatively we select our robust merging systems, the fraction of mass merging onto more massive companions is 2.0%-5.6%. Using the GAMA-II data we see no significant evidence for a change in the close-pair fraction between redshift $z = 0.05-0.2$. However, we find a systematically higher fraction of galaxies in similar mass close-pairs compared to published results over a similar redshift baseline. Using a compendium of data and the function $\gamma_M =A(1+z)m$ to predict the major close-pair fraction, we find fitting parameters of $A = 0.021 \pm 0.001$ and $m = 1.53 \pm 0.08$, which represents a higher low-redshift normalisation and shallower power-law slope than recent literature values. We find that the relative importance of in-situ star-formation versus galaxy merging is inversely correlated, with star-formation dominating the addition of stellar material below Mstar and merger accretion events dominating beyond Mstar. We find mergers have a measurable impact on the whole extent of the GSMF, manifest as a deepening of the dip in the GSMF over the next Gyr and an increase in Mstar by as much as 0.01-0.05 dex.
    Monthly Notices of the Royal Astronomical Society 08/2014; 444(4). DOI:10.1093/mnras/stu1604 · 5.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ALMA Regional Centres (ARCs) form the interface between the ALMA observatory and the user community from the proposal preparation stage to the delivery of data and their subsequent analysis. The ARCs provide critical services to both the ALMA operations in Chile and to the user community. These services were split by the ALMA project into core and additional services. The core services are financed by the ALMA operations budget and are critical to the successful operation of ALMA. They are contractual obligations and must be delivered to the ALMA project. The additional services are not funded by the ALMA project and are not contractual obligations, but are critical to achieve ALMA full scientific potential. A distributed network of ARC nodes (with ESO being the central ARC) has been set up throughout Europe at the following seven locations: Bologna, Bonn-Cologne, Grenoble, Leiden, Manchester, Ondrejov, Onsala. These ARC nodes are working together with the central node at ESO and provide both core and additional services to the ALMA user community. This paper presents the European ARC, and how it operates in Europe to support the ALMA community. This model, although complex in nature, is turning into a very successful one, providing a service to the scientific community that has been so far highly appreciated. The ARC could become a reference support model in an age where very large collaborations are required to build large facilities, and support is needed for geographically and culturally diverse communities.
    SPIE Astronomical Telescopes + Instrumentation; 08/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have analysed the growth of Brightest Group Galaxies and Brightest Cluster Galaxies (BGGs/BCGs) over the last 3 billion years using a large sample of 883 galaxies from the Galaxy And Mass Assembly Survey. By comparing the stellar mass of BGGs and BCGs in groups and clusters of similar dynamical masses, we find no significant growth between redshift $z=0.27$ and $z=0.09$. We also examine the number of BGGs/BCGs that have line emission, finding that approximately 65 per cent of BGGs/BCGs show H$\alpha$ in emission. From the galaxies where the necessary spectroscopic lines were accurately recovered (54 per cent of the sample), we find that half of this (i.e. 27 per cent of the sample) harbour on-going star formation with rates up to $10\,$M$_{\odot}$yr$^{-1}$, and the other half (i.e. 27 per cent of the sample) have an active nucleus (AGN) at the centre. BGGs are more likely to have ongoing star formation, while BCGs show a higher fraction of AGN activity. By examining the position of the BGGs/BCGs with respect to their host dark matter halo we find that around 13 per cent of them do not lie at the centre of the dark matter halo. This could be an indicator of recent cluster-cluster mergers. We conclude that BGGs and BCGs acquired their stellar mass rapidly at higher redshifts as predicted by semi-analytic models, mildly slowing down at low redshifts.
    Monthly Notices of the Royal Astronomical Society 02/2014; 440(1). DOI:10.1093/mnras/stu277 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Based on data from the Galaxy and Mass Assembly (GAMA) survey, we report on the discovery of structures that we refer to as `tendrils' of galaxies: coherent, thin chains of galaxies that are rooted in filaments and terminate in neighbouring filaments or voids. On average, tendrils contain 6 galaxies and span 10 $h^{-1}$ Mpc. We use the so-called line correlation function to prove that tendrils represent real structures rather than accidental alignments. We show that voids found in the SDSS-DR7 survey that overlap with GAMA regions contain a large number of galaxies, primarily belonging to tendrils. This implies that void sizes are strongly dependent on the number density and sensitivity limits of a survey. We caution that galaxies in low density regions, that may be defined as `void galaxies,' will have local galaxy number densities that depend on such observational limits and are likely higher than can be directly measured.
    Monthly Notices of the Royal Astronomical Society Letters 01/2014; 440(1). DOI:10.1093/mnrasl/slu019 · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: From a volume limited sample of 45,542 galaxies and 6,000 groups with $z \leq 0.213$ we use an adapted minimal spanning tree algorithm to identify and classify large scale structures within the Galaxy and Mass Assembly (GAMA) survey. Using galaxy groups, we identify 643 filaments across the three equatorial GAMA fields that span up to 200 $h^{-1}$ Mpc in length, each with an average of 8 groups within them. By analysing galaxies not belonging to groups we identify a secondary population of smaller coherent structures composed entirely of galaxies, dubbed `tendrils' that appear to link filaments together, or penetrate into voids, generally measuring around 10 $h^{-1}$ Mpc in length and containing on average 6 galaxies. Finally we are also able to identify a population of isolated void galaxies. By running this algorithm on GAMA mock galaxy catalogues we compare the characteristics of large scale structure between observed and mock data; finding that mock filaments reproduce observed ones extremely well. This provides a probe of higher order distribution statistics not captured by the popularly used two-point correlation function.
    Monthly Notices of the Royal Astronomical Society 11/2013; 438(1). DOI:10.1093/mnras/stt2136 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the contribution of galaxies with different properties to the global densities of star formation, atomic and molecular hydrogen as a function of redshift. We use the GALFORM model of galaxy formation and evolution, which is set in the LCDM framework. This model includes a self-consistent calculation of the relation between the star formation rate (SFR), and the molecular (H2) and atomic (HI) hydrogen contents of galaxies. The predicted global SFR density and how much of this is contributed by galaxies with different stellar masses and infrared luminosities are in agreement with observations. Also in agreement with observations is the predicted modest evolution of the HI density at z<3. At z<1, ~70% of the predicted H2 in the universe is locked up in galaxies with SFRs in the range 1-10Msun/yr. Model galaxies with moderately large SFRs, >10Msun/yr, make a contribution that increases with redshift, reaching ~50% at z~2. Current high-redshift galaxy surveys are limited to detect carbon monoxide in galaxies with SFR>~30Msun/yr, which in our model make up, at most, ~20% of the H2 in the universe. This contrasts with the predicted cosmic HI density, which is always dominated by galaxies with low SFRs, <1Msun/yr. In terms of stellar mass, the predicted H2 density is always dominated by massive galaxies, Mstellar>10^10Msun, in contrast with the HI density, which is dominated by low mass galaxies, Mstellar<10^9Msun. In the context of upcoming neutral gas surveys, we suggest that the faint nature of the galaxies dominating the HI content of the universe will hamper the optical and infrared counterpart identification, while for H2, we expect follow up observations of molecular emission lines of already existing optical and infrared galaxy catalogues to be able to uncover the H2 density of the universe.
    Monthly Notices of the Royal Astronomical Society 10/2013; 440(1). DOI:10.1093/mnras/stu266 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the multi-wavelength properties of a sample of 450-\mu m selected sources from the SCUBA-2 Cosmology Legacy Survey (S2CLS). A total of 69 sources were identified above 4\sigma\ in deep SCUBA-2 450-\mu m observations overlapping the UDS and COSMOS fields and covering 210 sq. arcmin to a typical depth of \sigma 450=1.5 mJy. Reliable cross identification are found for 58 sources (84 per cent) in Spitzer and Hubble Space Telescope WFC3/IR data. The photometric redshift distribution (dN/dz) of 450\mu m-selected sources is presented, showing a broad peak in the redshift range 1<z<3, and a median of z=1.4. Combining the SCUBA-2 photometry with Herschel SPIRE data from HerMES, the submm spectral energy distribution (SED) is examined via the use of modified blackbody fits, yielding aggregate values for the IR luminosity, dust temperature and emissivity of =10^12 +/- 0.8 L_sol, =42 +/- 11 K and <\beta_D>=1.6 +/- 0.5, respectively. The relationship between these SED parameters and the physical properties of galaxies is investigated, revealing correlations between T_D and LIR and between \beta_D and both stellar mass and effective radius. The connection between star formation rate and stellar mass is explored, with 24 per cent of 450 \mu m sources found to be ``star-bursts'', i.e. displaying anomalously high specific SFRs. However, both the number density and observed properties of these ``star-burst'' galaxies are found consistent with the population of normal star-forming galaxies.
    Monthly Notices of the Royal Astronomical Society 08/2013; 436(1). DOI:10.1093/mnras/stt1577 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a combined optical and X-ray analysis of the rich cluster Abell 1882 with the aim of identifying merging substructure and understanding the recent assembly history of this system. Our optical data consist of spectra drawn from the Galaxy and Mass Assembly (GAMA) survey, which lends itself to this kind of detailed study thanks to its depth and high spectroscopic completeness. We use 283 spectroscopically confirmed cluster members to detect and characterize substructure. We complement the optical data with X-ray data taken with both Chandra and XMM. Our analysis reveals that A1882 harbors two main components, A1882A and A1882B, which have a projected separation of 2Mpc and a line of sight velocity difference of v_{los}=-428km/s. The primary system, A1882A, has velocity dispersion sigma_v=500km/s and Chandra (XMM) temperature kT=3.57keV (3.31keV) while the secondary, A1882B, has sigma_v=457km/s and Chandra (XMM) temperature kT=2.39keV (2.12keV). The optical and X-ray estimates for the masses of the two systems are consistent within the uncertainties and indicate that there is twice as much mass in A1882A (M_{500}=1.5-1.9x10^{14}Msolar) when compared with A1882B (M_{500}=0.8-1.0x10^{14}Msolar). We interpret the A1882A/A1882B system as being observed prior to a core passage. Supporting this interpretation is the large projected separation of A1882A and A1882B and the dearth of evidence for a recent (<2Gyr) major interaction in the X-ray data. Two-body analyses indicate that A1882A and A1882B form a bound system with bound incoming solutions strongly favored. We compute blue fractions of f_b=0.28 and 0.18 for the spectroscopically confirmed member galaxies within r_{500} of the centers of A1882A and A1882B, respectively. These blue fractions do not differ significantly from the blue fraction measured from an ensemble of 20 clusters with similar mass and redshift.
    The Astrophysical Journal 06/2013; 772(2). DOI:10.1088/0004-637X/772/2/104 · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Atacama Large Millimeter/submillimeter Array (ALMA) has recently completed its first year of science observing and the second year is beginning with increased capabilities. The completion rates for European-led proposals are reported. User support activities in the European ALMA Regional Centres are summarised, together with the results of a survey of users.
    03/2013; 151:20-20.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Galaxy And Mass Assembly (GAMA) survey is a multiwavelength photometric and spectroscopic survey, using the AAOmega spectrograph on the Anglo-Australian Telescope to obtain spectra for up to ~300000 galaxies over 280 square degrees, to a limiting magnitude of r_pet < 19.8 mag. The target galaxies are distributed over 0<z<0.5 with a median redshift of z~0.2, although the redshift distribution includes a small number of systems, primarily quasars, at higher redshifts, up to and beyond z=1. The redshift accuracy ranges from sigma_v~50km/s to sigma_v~100km/s depending on the signal-to-noise of the spectrum. Here we describe the GAMA spectroscopic reduction and analysis pipeline. We present the steps involved in taking the raw two-dimensional spectroscopic images through to flux-calibrated one-dimensional spectra. The resulting GAMA spectra cover an observed wavelength range of 3750<lambda<8850 A at a resolution of R~1300. The final flux calibration is typically accurate to 10-20%, although the reliability is worse at the extreme wavelength ends, and poorer in the blue than the red. We present details of the measurement of emission and absorption features in the GAMA spectra. These measurements are characterised through a variety of quality control analyses detailing the robustness and reliability of the measurements. We illustrate the quality of the measurements with a brief exploration of elementary emission line properties of the galaxies in the GAMA sample. We demonstrate the luminosity dependence of the Balmer decrement, consistent with previously published results, and explore further how Balmer decrement varies with galaxy mass and redshift. We also investigate the mass and redshift dependencies of the [NII]/Halpha vs [OIII]/Hbeta spectral diagnostic diagram, commonly used to discriminate between star forming and nuclear activity in galaxies.
    Monthly Notices of the Royal Astronomical Society 01/2013; 430(3). DOI:10.1093/mnras/stt030 · 5.23 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: The mass-metallicity relationship (MMR) of star-forming galaxies is well-established, however there is still some disagreement with respect to its exact shape and its possible dependence on other observables. Aims: We measure the MMR in the Galaxy And Mass Assembly (GAMA) survey. We compare our measured MMR to that measured in the Sloan Digital Sky Survey (SDSS) and study the dependence of the MMR on various selection criteria to identify potential causes for disparities seen in the literature. Methods: We use strong emission line ratio diagnostics to derive oxygen abundances. We then apply a range of selection criteria for the minimum signal-to-noise in various emission lines, as well as the apparent and absolute magnitude to study variations in the inferred MMR. Results: The shape and position of the MMR can differ significantly depending on the metallicity calibration and selection used. After selecting a robust metallicity calibration amongst those tested, we find that the mass-metallicity relation for redshifts 0.061< z<0.35 in GAMA is in reasonable agreement with that found in the SDSS despite the difference in the luminosity range probed. Conclusions: In view of the significant variations of the MMR brought about by reasonable changes in the sample selection criteria and method, we recommend that care be taken when comparing the MMR from different surveys and studies directly. We also conclude that there could be a modest level of evolution over 0.06<z<0.35 within the GAMA sample.
    Astronomy and Astrophysics 11/2012; 547:A79. DOI:10.1051/0004-6361/201220050 · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We perform a quantitative morphological comparison between the hosts of Active Galactic Nuclei (AGN) and quiescent galaxies at intermediate redshifts (z~0.7). The imaging data are taken from the large HST/ACS mosaics of the GEMS and STAGES surveys. Our main aim is to test whether nuclear activity at this cosmic epoch is triggered by major mergers. Using images of quiescent galaxies and stars, we create synthetic AGN images to investigate the impact of an optical nucleus on the morphological analysis of AGN hosts. Galaxy morphologies are parameterized using the asymmetry index A, concentration index C, Gini coefficient G and M20 index. A sample of ~200 synthetic AGN is matched to 21 real AGN in terms of redshift, host brightness and host-to-nucleus ratio to ensure a reliable comparison between active and quiescent galaxies. The optical nuclei strongly affect the morphological parameters of the underlying host galaxy. Taking these effects into account, we find that the morphologies of the AGN hosts are clearly distinct from galaxies undergoing violent gravitational interactions. In fact, the host galaxies' distributions in morphological descriptor space are more similar to undisturbed galaxies than major mergers. Intermediate-luminosity (Lx < 10^44 erg/s) AGN hosts at z~0.7 show morphologies similar to the general population of massive galaxies with significant bulges at the same redshifts. If major mergers are the driver of nuclear activity at this epoch, the signatures of gravitational interactions fade rapidly before the optical AGN phase starts, making them undetectable on single-orbit HST images, at least with usual morphological descriptors. This could be investigated in future synthetic observations created from numerical simulations of galaxy-galaxy interactions.
    Astronomy and Astrophysics 10/2012; 549. DOI:10.1051/0004-6361/201015444 · 4.48 Impact Factor

Publication Stats

2k Citations
351.23 Total Impact Points

Institutions

  • 2002–2015
    • European Southern Observatory
      Arching, Bavaria, Germany
  • 2013
    • University of St Andrews
      • School of Physics and Astronomy
      Saint Andrews, Scotland, United Kingdom
  • 2009
    • Leiden University
      • Leiden Observartory
      Leiden, South Holland, Netherlands
    • University of Texas at Austin
      • Department of Astronomy
      Austin, Texas, United States
  • 2004–2009
    • University of Innsbruck
      • Institute for Astro-and Particle Physics
      Innsbruck, Tyrol, Austria
  • 2008
    • Innsbruck Economics
      Absam, Tyrol, Austria
  • 2001–2005
    • The University of Edinburgh
      • Institute for Astronomy (IfA)
      Edinburgh, Scotland, United Kingdom
  • 1998–2002
    • The Royal Observatory, Edinburgh
      Edinburgh, Scotland, United Kingdom