Benoît Halter

University of Strasbourg, Strasbourg, Alsace, France

Are you Benoît Halter?

Claim your profile

Publications (3)11.61 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Motor neuron degeneration and progressive muscle atrophy characterize amyotrophic lateral sclerosis (ALS) in humans and related mutant superoxide dismutase-1 (SOD1) transgenic mice. Our previous microarray studies on ALS muscle revealed strong up-regulation of Ras-related associated with diabetes (Rad), an inhibitor of voltage-gated calcium channels. The mechanisms controlling Rad expression in disease are unknown. We analyzed Rad expression in skeletal muscle from ALS patients and animal models and investigated whether it is regulated by oxidative stress. In mutant SOD1 mice, Rad up-regulation preceded motor symptoms and markedly increased as disease progressed. Increased Rad expression was also obtained in surgically denervated muscle. No clinical signs of denervation were seen in asymptomatic mice, however. We therefore suspected that muscular mutant SOD1 toxicity causes precocious Rad up-regulation. We confirmed the accumulation of reactive oxygen species (ROS) at asymptomatic stages, coincident with the rise in Rad expression. By subjecting muscle to ischemia-reperfusion, we observed ROS accumulation and Rad overexpression. The cell-permeative antioxidant Tempol inhibited the stimulatory effect of ischemia-reperfusion. Tempol also reduced Rad up-regulation after experimental denervation. Our study provides strong evidence for the implication of oxidative stress in modulating Rad expression, in association with the initiation and progression of ALS muscle atrophy.
    Free Radical Biology and Medicine 04/2010; 48(7):915-23. · 5.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS), the most frequent adult onset motor neuron disease, is associated with hypermetabolism linked to defects in muscle mitochondrial energy metabolism such as ATP depletion and increased oxygen consumption. It remains unknown whether muscle abnormalities in energy metabolism are causally involved in the destruction of neuromuscular junction (NMJ) and subsequent motor neuron degeneration during ALS. We studied transgenic mice with muscular overexpression of uncoupling protein 1 (UCP1), a potent mitochondrial uncoupler, as a model of muscle restricted hypermetabolism. These animals displayed age-dependent deterioration of the NMJ that correlated with progressive signs of denervation and a mild late-onset motor neuron pathology. NMJ regeneration and functional recovery were profoundly delayed following injury of the sciatic nerve and muscle mitochondrial uncoupling exacerbated the pathology of an ALS animal model. These findings provide the proof of principle that a muscle restricted mitochondrial defect is sufficient to generate motor neuron degeneration and suggest that therapeutic strategies targeted at muscle metabolism might prove useful for motor neuron diseases.
    PLoS ONE 02/2009; 4(4):e5390. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Muscle atrophy is a major hallmark of amyotrophic lateral sclerosis (ALS), the most frequent adult-onset motor neuron disease. To define the full set of alterations in gene expression in skeletal muscle during the course of the disease, we used the G86R superoxide dismutase-1 transgenic mouse model of ALS and performed high-density oligonucleotide microarrays. We compared these data to those obtained by axotomy-induced denervation. A major set of gene regulations in G86R muscles resembled those of surgically denervated muscles, but many others appeared specific to the ALS condition. The first significant transcriptional changes appeared in a subpopulation of mice before the onset of overt clinical symptoms and motor neuron death. These early changes affected genes involved in detoxification (e.g., ALDH3, metallothionein-2, and thioredoxin-1) and regeneration (e.g., BTG1, RB1, and RUNX1) but also tissue degradation (e.g., C/EBPdelta and DDIT4) and cell death (e.g., ankyrin repeat domain-1, CDKN1A, GADD45alpha, and PEG3). Of particular interest, metallothionein-1 and -2, ATF3, cathepsin-Z, and galectin-3 genes appeared, among others, commonly regulated in both skeletal muscle (our present data) and spinal motor neurons (as previously reported) of paralyzed ALS mice. The importance of these findings is twofold. First, they designate the distal part of the motor unit as a primary site of disease. Second, they identify specific gene regulations to be explored in the search for therapeutic strategies that could alleviate disease before motor neuron death manifests clinically.
    Physiological Genomics 02/2008; 32(2):207-18. · 2.81 Impact Factor

Publication Stats

124 Citations
11.61 Total Impact Points

Institutions

  • 2009–2010
    • University of Strasbourg
      • Laboratoire de signalisations moléculaires et neurodégénérescence
      Strasbourg, Alsace, France
  • 2008
    • French Institute of Health and Medical Research
      • Laboratoire de Signalisation Moléculaire et Neurodégénérescence U692
      Paris, Ile-de-France, France