T. F. Mentel

Forschungszentrum Jülich, Jülich, North Rhine-Westphalia, Germany

Are you T. F. Mentel?

Claim your profile

Publications (84)144.87 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The impact of nitrogen oxides (NOx = NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory set up. At high NOx conditions (BVOC/NOx < 7, NOx > 23 ppb) no new particles were formed. Instead photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. As soon as [NO] was reduced to below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF orders of magnitude slower than in analogous experiments at low NOx conditions (NOx ~ 300 ppt), although OH concentrations were higher. Varying NO2 photolysis enabled showing that NO was responsible for suppression of NPF suggesting that peroxy radicals are involved in NPF. The rates of NPF and photochemical ozone production were related by power law dependence with an exponent of approximately -2. This exponent indicated that the overall peroxy radical concentration must have been the same whenever NPF appeared. Thus permutation reactions of first generation peroxy radicals cannot be the rate limiting step in NPF from monoterpene oxidation. It was concluded that permutation reactions of higher generation peroxy radical like molecules limit the rate of new particle formation. In contrast to the strong effects on the particle numbers, the formation of particle mass was less sensitive to NOx concentrations, if at all. Only at very high NOx concentrations yields were reduced by about an order of magnitude.
    Atmospheric Chemistry and Physics 10/2013; 13(10):25827-25870. · 4.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Volatile Organic Compounds (VOCs) are mostly emitted at the ground and are degraded by the reactions with OH, NO3 or O3 as they rise upwards in the atmosphere. VOCs play an important role as sources and sinks for radicals in the troposphere. Up to date, most of the VOC measurements were performed from ground based platforms; the profile measurements across the whole planetary boundary layer (PBL) are still quite limited which restrained the exploring of the VOCs chemistry of the entire PBL. This although these measurements are particularly interesting, as most of the chemistry of the VOC degradation in the troposphere takes place in the PBL. Moreover, fast VOCs measurements utilizing Gas Chromatography coupled with Mass Spectrometry (GC-MS) are a challenge due to the great chemical variability of VOC species. Therefore accurate in-situ measurements of VOCs together with other species as CO, NOx, O3 and the OH reactivity, encompassing different levels of altitude and fast time resolution, would essentially improve the understanding of the VOC distribution in the lower troposphere. Here we present the setup and the modifications of the fast GC-MS system and the results of the PEGASOS Zeppelin campaigns in summer 2012. First, we present our developments and modifications of an in-flight GC-MS system to detect volatile non methane hydrocarbons (NMHC) with a time resolution of 3 minutes and a detection limit in the order of 2 pptv. The modified setup enabled us to analyze 70 different VOC species, ranging from alkanes (C4 to C11), aromatics and terpenes to oxygenated hydrocarbons (OVOC) such as alcohols and aldehydes. Second, in contrast to previous airplane studies also utilizing a GC-MS system, the Zeppelin NT as a measuring platform during the PEGASOS campaign enabled us to measure vertical profiles up to 1500m at low travelling speeds which means a high spatial resolution. We will present results for selected VOC that offer new insights on height profiles encompassing different emission regimes (anthropogenic and biogenic) in both the Netherlands and in Italy, and on the fate of VOCs in the nocturnal boundary layer. Third, we also present how the VOC concentrations relate to other substances such as CO, NOx, O3 and the OH reactivity. Especially the comparison of VOC Data with the measured OH reactivity will reveal more insight into the 'missing reactivity'. Acknowledgement: PEGASOS project funded by the European Commission under the Framework Program 7 (FP7-ENV-2010-265148)
    04/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The hydroxyl (OH) and hydroperoxy (HO2) radicals are key compounds for the degradation of pollutants in the atmosphere. Therefore, accurate and precise measurements of HOx radicals (= OH + HO2) at different altitudes and in different regions are necessary to test our understanding of atmospheric chemical processes. The planetary boundary layer (PBL) is of special interest as it is chemically the most active part of the atmosphere. Until today there is a general lack of measurements investigating the distribution of radicals, trace gases, and aerosols in the PBL with high spatial resolution. Here, we present results of two measurement campaigns performed from May - July 2012 in the metropolitan area of Rotterdam, the Netherlands, and in the Po valley region in Italy as part of the Pan-European Gas-AeroSOls-climate interaction Study (PEGASOS). We used the Zeppelin NT as an airborne platform for measurements of HOx radical concentrations and total OH reactivity applying a remotely controlled Laser Induced Fluorescence (LIF) instrument. In addition a comprehensive set of other trace gases (O3, CO, NO, NO2, HCHO, HONO), photolysis frequencies, particle number concentration, and meteorological parameters were measured. The airship Zeppelin NT allowed us to perform unique flight patterns, including localized height profiles up to 900 m above ground and transect flights at low flight speeds. We present measured data for the HOx radical concentrations and the total OH reactivity along with a model analysis of the radical chemistry. Maximum daytime concentrations were 2.0 × 107cm-3 for OH and 1.5 × 109cm-3 for HO2. Typical values for the total OH reactivity were smaller than 10 s-1. During the morning hours, vertical gradients in radical and trace gas concentrations were observed indicating a layered atmospheric structure. The vertical gradients vanished after sunrise due to enhanced convective mixing of the PBL.
    04/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Climate change will induce extended heat waves to parts of the vegetation more frequently. High temperatures may act as stress (thermal stress) on plants changing emissions of biogenic volatile organic compounds (BVOCs). As BVOCs impact the atmospheric oxidation cycle and aerosol formation, it is important to explore possible alterations of BVOC emissions under high temperature conditions. Applying heat to European beech, Palestine oak, Scots pine, and Norway spruce in a laboratory setup either caused the well-known exponential increases of BVOC emissions or induced irreversible changes of BVOC emissions. Considering only irreversible changes of BVOC emissions as stress impacts, we found that high temperatures decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. This behaviour was independent of the tree species and whether the de novo emissions were constitutive or induced by biotic stress. In contrast, application of thermal stress to conifers amplified the release of monoterpenes stored in resin ducts of conifers and induced emissions of green leaf volatiles. In particular during insect attack on conifers, the plants showed de novo emissions of sesquiterpenes and phenolic BVOCs, which exceeded constitutive monoterpene emissions from pools. The heat-induced decrease of de novo emissions was larger than the increased monoterpene release caused by damage of resin ducts. For insect-infested conifers the net effect of thermal stress on BVOC emissions could be an overall decrease. Global change-induced heat waves may put hard thermal stress on plants. If so, we project that BVOC emissions increase is more than predicted by models only in areas predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOCs. Otherwise overall effects of high temperature stress will be lower increases of BVOC emissions than predicted by algorithms that do not consider stress impacts.
    Biogeosciences 12/2012; 9(12):5111-5123. · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Changes in the biogenic volatile organic compound (BVOC) emissions from European beech, Palestine oak, Scots pine, and Norway spruce exposed to heat stress were measured in a laboratory setup. In general, heat stress decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. Decreasing emission strength with heat stress was independent of the tree species and whether the de novo emissions being constitutive or induced by biotic stress. In contrast, heat stress induced emissions of green leaf volatiles. It also amplified the release of monoterpenes stored in resin ducts of conifers probably due to heat-induced damage of these resin ducts. The increased release of monoterpenes could be strong and long lasting. But, despite of such strong monoterpene emission pulses, the net effect of heat stress on BVOC emissions from conifers can be an overall decrease. In particular during insect attack on conifers the plants showed de novo emissions of sesquiterpenes and phenolic BVOC which exceeded constitutive monoterpene emissions from pools. The heat stress induced decrease of these de novo emissions was larger than the increased release caused by damage of resin ducts. We project that global change induced heat waves may cause increased BVOC emissions only in cases where the respective areas are predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOC. Otherwise the overall effect of heat stress will be a decrease in BVOC emissions.
    Biogeosciences Discussions 07/2012; 9(7):9533-9570.
  • 2012 NOSA Aerosol Symposium, Helsingør, Denmark, 15-16 November; 01/2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N2O5 detection in the atmosphere has been accomplished using techniques which have been developed during the last decade. Most techniques use a heated inlet to thermally decompose N2O5 to NO3, which can be detected by either cavity based absorption at 662 nm or by laser-induced fluorescence. In summer 2007, a large set of instruments, which were capable of measuring NO3 mixing ratios, were simultaneously deployed in the atmosphere simulation chamber SAPHIR in Jülich, Germany. Some of these instruments measured N2O5 mixing ratios either simultaneously or alternatively. Experiments focused on the investigation of potential interferences from, e.g., water vapour or aerosol and on the investigation of the oxidation of biogenic volatile organic compounds by NO3. The comparison of N2O5 mixing ratios shows an excellent agreement between measurements of instruments applying different techniques (3 cavity ring-down (CRDS) instruments, 2 laser-induced fluorescence (LIF) instruments). Datasets are highly correlated as indicated by the square of the linear correlation coefficients, R2, which values were larger than 0.96 for the entire datasets. N2O5 mixing ratios well agree within the combined accuracy of measurements. Slopes of the linear regression range between 0.87 and 1.26 and intercepts are negligible. The most critical aspect of N2O5 measurements by cavity ring-down instruments is the determination of the inlet and filter transmission efficiency. Measurements here show that the N2O5 inlet transmission efficiency can decrease in the presence of high aerosol loads, and that frequent filter/inlet changing is necessary to quantitatively sample N2O5 in some environments. The analysis of data also demonstrates that a general correction for degrading filter transmission is not applicable for all conditions encountered during this campaign. Besides the effect of a gradual degradation of the inlet transmission efficiency aerosol exposure, no other interference for N2O5 measurements is found.
    Atmos. Meas. Tech. 01/2012; 5:2763-2777.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Humic-like substances (HULIS) constitute a significant fraction of aerosol particles in different environments. Studies of the role of HULIS in hygroscopic growth and cloud condensation nuclei (CCN) activity of aerosol particles are scarce, and results differ significantly. In this work the hygroscopic growth and CCN activity of water extracts (WE) and HULIS extracted from particulate matter (PM) collected at a polluted urban site (Copenhagen, Denmark), a rural site (Melpitz, Germany) and the remote site Storm Peak Laboratory (Colorado, USA) were investigated. Measurements of inorganic ions, elemental carbon, organic carbon and water soluble organic carbon (WSOC) within the PM confirmed that the sources of aerosol particles most likely differed for the three samples. The hygroscopic properties of the filtered WE were characterized by hygroscopicity parameters for subsaturated conditions (k(GF)) of 0.25, 0.41 and 0.22, and for supersaturated conditions k(CCN) were 0.23, 0.29 and 0.22 respectively for the urban, rural and remote WE samples. The measured hygroscopic growth and CCN activity were almost identical for the three HULIS samples and could be well represented by k(GF) = 0.07 and k(CCN) = 0.08-0.10 respectively. Small amounts of inorganic ions were present in the HULIS samples so the actual values for pure HULIS are expected to be slightly lower (k(GF)({*}) = 0.04-0.06 and k(CCN)({*}) = 0.07-0.08). The HULIS samples are thus less hygroscopic compared to most previous studies. To aid direct comparison of hygroscopic properties of HULIS from different studies, we recommend that the fraction of inorganic species in the HULIS samples always is measured and reported.
    Journal of Geophysical Research 01/2012; 117(D22). · 3.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Within the framework of the international cloud experiment "Hill Cap Cloud Thuringia 2010" (HCCT-2010), the influence of cloud processing on the activation properties of ambient aerosol particles was investigated. Particles were probed up- and downwind of an orographic cap cloud on Mt. Schmücke, which is part of a large mountain ridge in Thuringia, Germany. The activation properties of the particles were investigated by means of size-segregated Cloud Condensation Nuclei (CCN) measurements at 3 to 4 different supersaturations. The observed CCN spectra together with the total particle spectra were used to calculate the hygroscopicity parameter κ for the up- and the downwind stations. The up- and downwind critical diameters and κ values were then compared for defined Cloud Events and Non Cloud Events. Cloud processing was found to significantly increase the hygroscopicity of the aerosol particles, with an average increase in κ of 50%. Mass spectrometry analysis and isotopic analysis of the particles show that the observed increase in hygroscopicity of the cloud-processed particles is due to an enrichment of nitrate and sulfate in the particle phase.
    16th International Conference on Clouds and Precipitation (ICCP), Leipzig, Germany, 30 July - 3 August; 01/2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents the results of mass spectrometric investigations of the OH-initiated oxidative aging of α-pinene SOA under simulated tropospheric conditions at the large aerosol chamber facility AIDA, Karlsruhe Institute of Technology. In particular, the OH-initiated oxidation of pure pinic and pinonic acid, two well-known oxidation products of α-pinene, was investigated. Two complementary analytical techniques were used, on-line atmospheric pressure chemical ionization/mass spectrometry (APCI/MS) and filter sampling followed by liquid chromatography/mass spectrometry (LC/ESI-MS). The results show that 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known and very low volatile α-pinene SOA product, is formed from the oxidation of pinonic acid and that this oxidation takes place in the gas phase. This finding is confirmed by temperature-dependent aging experiments on whole SOA formed from α-pinene, in which the yield of MBTCA scales with the pinonic acid fraction in the gas phase. Based on the results, several feasible gas-phase radical mechanisms are discussed to explain the formation of MBTCA from OH-initiated pinonic acid oxidation.
    ATMOSPHERIC CHEMISTRY AND PHYSICS 01/2012; 12(3):1483-1496. · 5.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stress-induced volatile organic compound (VOC) emissions from transgenic Grey poplar modified in isoprene emission potential were used for the investigation of photochemical secondary organic aerosol (SOA) formation. In poplar, acute ozone stress induces the emission of a wide array of VOCs dominated by sesquiterpenes and aromatic VOCs. Constitutive light-dependent emission of isoprene ranged between 66 nmol m-2 s-1 in non-transgenic controls (wild type WT) and nearly zero (<0.5 nmol m-2 s-1) in isoprene emission-repressed plants (line RA22), respectively. Nucleation rates of up to 3600 cm-3 s-1 were observed in our experiments. In the presence of isoprene new particle formation was suppressed compared to non-isoprene containing VOC mixtures. Compared to isoprene/monoterpene systems emitted from other plants the suppression of nucleation by isoprene was less effective for the VOC mixture emitted from stressed poplar. This is explained by the observed high efficiency of new particle formation for emissions from stressed poplar. Direct measurements of OH in the reaction chamber revealed that the steady state concentration of OH is lower in the presence of isoprene than in the absence of isoprene, supporting the hypothesis that isoprenes' suppressing effect on nucleation is related to radical chemistry. In order to test whether isoprene contributes to SOA mass formation, fully deuterated isoprene (C5D8) was added to the stress-induced emission profile of an isoprene free poplar mutant. Mass spectral analysis showed that, despite the isoprene-induced suppression of particle formation, fractions of deuterated isoprene were incorporated into the SOA. A fractional mass yield of 2.3% of isoprene was observed. Future emission changes due to land use and climate change may therefore affect both gas phase oxidation capacity and new particle number formation.
    ATMOSPHERIC CHEMISTRY AND PHYSICS 12/2011; 12:1021-1030. · 5.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. These achievements and related studies have substantially improved our understanding and reduced the uncertainties of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.
    Atmospheric Chemistry and Physics 12/2011; 11:13061-13143. · 4.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biogenic volatile organic compounds (BVOC) are precursors of secondary organic aerosols (SOA), which can scatter and absorb radiation. BVOC therefore indirectly impact the Earth's climate. Earth's climate is projected to change, possibly putting and vegetation under stress due to intensive heat and drought periods. Such stress situations will alter BVOC emissions that may induce feedbacks between vegetation and climate change. The main aim of our study is to determine whether such effect exists. A first step was to determine the impacts of drought and heat on BVOC emissions and subsequent SOA formation. Experiments were performed in the Juelich plant atmosphere chamber. Pine and Spruce were taken as representatives for species exhibiting storage organs for monoterpenes (MT). Beech and Birch were used as species with MT emissions closely coupled to CO2 uptake. The plants were stored under well-defined conditions of temperature and light intensity. Heat stress was induced by increasing the chamber temperature; drought stress was induced by not irrigating the plants. A fraction of the air leaving the plant chamber was fed into a reaction chamber where SOA formation was induced by OH-initiated oxidation. During stress situations the plants' BVOC emissions changed significantly. As a general feature we found that combined heat and drought stress increased MT emissions from conifers but decreased MT emissions from the broadleaf species. The former was attributed to a heat-induced breakdown of storage organs. The latter was attributed to a general breakdown of biosynthetic activity. SOA formation potentials were changed together with the MT emissions. The decrease in SOA formation potential due to the decrease of MT emissions from broadleaf species was amplified by additional emissions of green leaf volatiles (GLV). Obviously, GLV can suppress SOA formation by suppressing OH concentrations. GLV were also emitted from the conifers under heat stress. However the contribution of GLV to the BVOC mix was too low to suppress SOA formation significantly. Therefore, increases of MT emissions from heat stressed conifers followed by an increased SOA formation potential might be seen as a process leading to a negative climate feedback. This hypothesis was contested by the observation of a heat stress induced breakdown of pathogen-induced BVOC emissions. Conifers infested by aphids showed strong emissions of SQT and BVOC synthesized downstream of the shikimate pathway. Also these emissions are closely coupled to the CO2 uptake. Hence, these emissions vanished after heat stress causing a strong decrease of the SOA formation potential. At this stage it is difficult to assess whether heat and drought stress cause a negative or a positive feedbacks between vegetation and climate. Nevertheless, we conclude that such feedbacks exist. Key words: BVOC, SOA formation
    AGU Fall Meeting Abstracts. 12/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: No abstract available.
    ATMOSPHERIC CHEMISTRY AND PHYSICS 11/2011; 11(22):11919-11919. · 5.51 Impact Factor
  • Source
    European Aerosol Conference 2011, Manchester, UK; 09/2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability of coated mineral dust particles to act as cloud condensation nuclei (CCN) and ice nuclei (IN) was investigated at LACIS (Leipzig Aerosol Cloud Interaction Simulator) during the FROST1- and FROST2-campaigns (Freezing of dust). Sulphuric acid was condensed on the particles which afterwards were optionally humidified, treated with ammonia vapour and/or heat. By means of aerosol mass spectrometry we found evidence that processing of mineral dust particles with sulphuric acid leads to surface modifications of the particles. These surface modifications are responsible for the observed reduction of the IN activation of the particles. The observed particle mass spectra suggest that different treatments lead to different chemical reactions on the particle surface. Possible chemical reaction pathways and products are suggested and the implications on IN and CCN efficiency of the treated dust particles are discussed.
    Atmospheric Chemistry and Physics 01/2011; 11:7235-7289. · 4.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility. A GFG-1000 soot generator applying nitrogen, respectively argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC) to black carbon (BC) ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile) and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA). Two Cloud Condensation Nucleus Counter (CCNC) were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon) and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings lead to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH), which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume, that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.
    Atmospheric Chemistry and Physics 01/2011; 11:28445-28475. · 4.88 Impact Factor
  • EGU, Vienna, Austria; 01/2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability of coated mineral dust particles to act as ice nuclei (IN) was investigated at LACIS (Leipzig Aerosol Cloud Interaction Simulator) during the FROST1- and FROST2-campaigns (Freezing of dust). Sulphuric acid was condensed on the particles which afterwards were optionally humidified, treated with ammonia vapour and/or heat. By means of aerosol mass spectrometry we found evidence that processing of mineral dust particles with sulphuric acid leads to surface modifications of the particles. These surface modifications are most likely responsible for the observed reduction of the IN activation of the particles. The observed particle mass spectra suggest that different treatments lead to different chemical reactions on the particle surface. Possible chemical reaction pathways and products are suggested and the implications on the IN efficiency of the treated dust particles are discussed.
    ATMOSPHERIC CHEMISTRY AND PHYSICS 01/2011; 11(15):7839-7858. · 5.51 Impact Factor
  • European Aerosol Conference (EAC), Manchester, UK, 4-9 September; 01/2011