David W Dyer

University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States

Are you David W Dyer?

Claim your profile

Publications (94)346.3 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neonatal bacteremia Escherichia coli strains commonly belong to the K1 capsular type. Their ability to cause invasive neonatal disease appears to be determined by other virulence factors that have yet to be identified. We report here the genome sequences of four E. coli neonatal bacteremia isolates, including that of the archetypal strain RS218. FOOTNOTES Address correspondence to Susana Chavez-Bueno, susana-chavez-bueno{at}ouhsc.edu. Citation Day MW, Jackson LA, Akins DR, Dyer DW, Chavez-Bueno S. 2015. Whole-genome sequences of the archetypal K1 Escherichia coli neonatal isolate RS218 and contemporary neonatal bacteremia clinical isolates SCB11, SCB12, and SCB15. Genome Announc 3(1):e01598-14. doi:10.1128/genomeA.01598-14. Received 31 December 2014. Accepted 15 January 2015. Published 26 February 2015. Copyright © 2015 Day et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.
    Genome Announcements 02/2015; 3(1). DOI:10.1128/genomeA.01598-14
  • Source
    Inimary T Toby · Jonah Widmer · David W Dyer
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The Bacillus cereus sensu lato group contains ubiquitous facultative anaerobic soil-borne Gram-positive spore-forming bacilli. Molecular phylogeny and comparative genome sequencing have suggested that these organisms should be classified as a single species. While clonal in nature, there do not appear to be species-specific clonal lineages, excepting B. anthracis, in spite of the wide array of phenotypes displayed by these organisms. Results We compared the protein-coding content of 201 B. cereus sensu lato genomes to characterize differences and understand the consequences of these differences on biological function. From this larger group we selected a subset consisting of 25 whole genomes for deeper analysis. Cluster analysis of orthologous proteins grouped these genomes into five distinct clades. Each clade could be characterized by unique genes shared among the group, with consequences for the phenotype of each clade. Surprisingly, this population structure recapitulates our recent observations on the divergence of the generalized stress response (SigB) regulons in these organisms. Divergence of the SigB regulon among these organisms is primarily due to the placement of SigB-dependent promoters that bring genes from a common gene pool into/out of the SigB regulon. Conclusions Collectively, our observations suggest the hypothesis that the evolution of these closely related bacteria is a consequence of two distinct processes. Horizontal gene transfer, gene duplication/divergence and deletion dictate the underlying coding capacity in these genomes. Regulatory divergence overlays this protein coding reservoir and shapes the expression of both the unique and shared coding capacity of these organisms, resulting in phenotypic divergence. Data from other organisms suggests that this is likely a common pattern in prokaryotic evolution.
    BMC Bioinformatics 10/2014; 15 Suppl 11(Suppl 11):S8. DOI:10.1186/1471-2105-15-S11-S8 · 2.67 Impact Factor
  • Source
    Michael Day · Mohamed Ibrahim · David Dyer · Lee Bulla
    [Show abstract] [Hide abstract]
    ABSTRACT: We report here the complete genome sequence of Bacillus thuringiensis subsp. kurstaki strain HD-1, which serves as the primary U.S. reference standard for all commercial insecticidal formulations of B. thuringiensis manufactured around the world.
    Genome Announcements 07/2014; 2(4). DOI:10.1128/genomeA.00613-14
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SCB34 is a sequence type 131, highly invasive, multidrug-resistant Escherichia coli isolate that produced neonatal bacteremia. Whole-genome sequencing was performed using a 250-bp library on the Illumina MiSeq platform; 5,910,264 reads were assembled de novo using the A5 assembly pipeline. The total contig length was 5,227,742 bp; the RAST server was used for annotation.
    Genome Announcements 05/2014; 2(3). DOI:10.1128/genomeA.00514-14
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Emergent human and simian adenoviruses (HAdVs) may arise from genome recombination. Computational analysis of SAdV type 35 reveals a genome comprising a chassis with elements mostly from two simian adenoviruses, SAdV-B21 and -B27, and regions of high sequence similarity shared with HAdV-B21 and HAdV-B16. Although recombination direction cannot be determined, the presence of these regions suggests prior infections of humans by an ancestor of SAdV-B35, and/or vice versa. Absence of this virus in humans may reflect non-optimal conditions for zoonosis or incomplete typing, e.g., limited epitope-based. The presence of both a critical viral replication element found in HAdV genomes and genes that are highly similar to ones in HAdVs suggest the potential to establish in a human host. This allows a prediction that this virus may be a nascent human respiratory pathogen. The recombination potential of human and simian adenovirus genomes should be considered in the use of SAdVs as vectors for gene delivery in humans.
    Virology 12/2013; 447(1-2):265-73. DOI:10.1016/j.virol.2013.09.009 · 3.28 Impact Factor
  • Source
    Donald Seto · Morris S Jones · David W Dyer · James Chodosh
    Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology 10/2013; 58(4). DOI:10.1016/j.jcv.2013.09.025 · 3.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of gene expression by small non-coding RNAs (sRNAs) plays a critical role in bacterial response to physiological stresses. NrrF, a trans-acting sRNA in Neisseria meningitidis and Neisseria gonorrhoeae, has been shown in the meningococcus to indirectly control, in response to iron (Fe) availability, the transcription of genes encoding subunits of succinate dehydrogenase, a Fe-requiring enzyme. Given that in other organisms sRNAs target multiple mRNAs to control gene expression, we used a global approach to examine the role of NrrF in controlling gonococcal transcription. Three strains, including N. gonorrhoeae FA1090, an nrrF deletion mutant and a complemented derivative were examined using a custom CombiMatrix microarray to assess the role of this sRNA in controlling gene expression in response to Fe availability. In the absence of NrrF, mRNA half-lives increased for 12 genes in Fe-depleted growth conditions, compared to FA1090. Biological functions for the 12 genes controlled by NrrF included energy metabolism, oxidative stress, antibiotic resistance, amino acid synthesis and a regulatory protein whose functions are not fully understood, in addition to hypothetical proteins.
    Journal of bacteriology 09/2013; DOI:10.1128/JB.00839-13 · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genes within the E3 transcription unit of human adenoviruses modulate host immune responses to infection. A comprehensive genomics and bioinformatics analysis of the E3 transcription unit for 38 viruses within human adenovirus species D (HAdV-D) revealed distinct and surprising patterns of homologous recombination. Homologous recombination was identified in open reading frames for E3 CR1α, CR1β, and CR1γ, similar to that previously observed with genes encoding the major structural capsid proteins, penton base, hexon, and fiber.
    Journal of Virology 09/2013; DOI:10.1128/JVI.01927-13 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Computational analysis of human adenovirus type 4 (HAdV-E4), a pathogen that is the only HAdV member of species E, provides insights into its zoonotic origin and molecular adaptation. Its genome encodes a domain of the major capsid protein, hexon, from HAdV-B16 recombined into the genome chassis of a simian adenovirus. Genomes of two recent field strains provide a clue to its adaptation to the new host: recombination of a NF-I binding site motif, which is required for efficient viral replication, from another HAdV genome. This motif is absent in the chimpanzee adenoviruses and the HAdV-E4 prototype, but is conserved amongst other HAdVs. This is the first report of an interspecies recombination event for HAdVs, and the first documentation of a lateral partial gene transfer from a chimpanzee AdV. The potential for such recombination events are important when considering chimpanzee adenoviruses as candidate gene delivery vectors for human patients.
    Virology 06/2013; 443(2). DOI:10.1016/j.virol.2013.05.014 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent emergence of highly virulent human adenoviruses (HAdVs) with new tissue tropisms underscores the need to determine their ontogeny. Here we report complete high quality genome sequences and analyses for all the previously unsequenced HAdV serotypes (n = 20) within HAdV species D. Analysis of nucleotide sequence variability for these in conjunction with another 40 HAdV prototypes, comprising all seven HAdV species, confirmed the uniquely hypervariable regions within species. The mutation rate among HAdV-Ds was low when compared to other HAdV species. Homologous recombination was identified in at least two of five examined hypervariable regions for every virus, suggesting the evolution of HAdV-Ds has been highly dependent on homologous recombination. Patterns of alternating GC and AT rich motifs correlated well with hypervariable region recombination sites across the HAdV-D genomes, suggesting foci of DNA instability lead to formulaic patterns of homologous recombination and confer agility to adenovirus evolution.
    Scientific Reports 05/2013; 3:1812. DOI:10.1038/srep01812 · 5.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT For DNA viruses, genetic recombination, addition, and deletion represent important evolutionary mechanisms. Since these genetic alterations can lead to new, possibly severe pathogens, we applied a systems biology approach to study the pathogenicity of a novel human adenovirus with a naturally occurring deletion of the canonical penton base Arg-Gly-Asp (RGD) loop, thought to be critical to cellular entry by adenoviruses. Bioinformatic analysis revealed a new highly recombinant species D human adenovirus (HAdV-D60). A synthesis of in silico and laboratory approaches revealed a potential ocular tropism for the new virus. In vivo, inflammation induced by the virus was dramatically greater than that by adenovirus type 37, a major eye pathogen, possibly due to a novel alternate ligand, Tyr-Gly-Asp (YGD), on the penton base protein. The combination of bioinformatics and laboratory simulation may have important applications in the prediction of tissue tropism for newly discovered and emerging viruses. IMPORTANCE The ongoing dance between a virus and its host distinctly shapes how the virus evolves. While human adenoviruses typically cause mild infections, recent reports have described newly characterized adenoviruses that cause severe, sometimes fatal human infections. Here, we report a systems biology approach to show how evolution has affected the disease potential of a recently identified novel human adenovirus. A comprehensive understanding of viral evolution and pathogenicity is essential to our capacity to foretell the potential impact on human disease for new and emerging viruses.
    mBio 02/2013; 4(2). DOI:10.1128/mBio.00595-12 · 6.88 Impact Factor
  • Source
    Edgar Scott · David W Dyer
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The Bacillus cereus sensu lato group currently includes seven species (B. cereus, B. anthracis, B. mycoides, B. pseudomycoides, B. thuringiensis, B. weihenstephanensis and B. cytotoxicus) that recent phylogenetic and phylogenomic analyses suggest are likely a single species, despite their varied phenotypes. Although horizontal gene transfer and insertion-deletion events are clearly important for promoting divergence among these genomes, recent studies have demonstrated that a major basis for phenotypic diversity in these organisms may be differential regulation of the highly similar gene content shared by these organisms. To explore this hypothesis, we used an in silico approach to evaluate the relationship of pathogenic potential and the divergence of the SigB-dependent general stress response within the B. cereus sensu lato group, since SigB has been demonstrated to support pathogenesis in Bacillus, Listeria and Staphylococcus species. Results During the divergence of these organisms from a common “SigB-less” ancestor, the placement of SigB promoters at varied locations in the B. cereus sensu lato genomes predict alternative structures for the SigB regulon in different organisms. Predicted promoter changes suggesting differential transcriptional control of a common gene pool predominate over evidence of indels or horizontal gene transfer for explaining SigB regulon divergence. Conclusions Four lineages of the SigB regulon have arisen that encompass different gene contents and suggest different strategies for supporting pathogenesis. This is consistent with the hypothesis that divergence within the B. cereus sensu lato group rests in part on alternative strategies for regulation of a common gene pool.
    BMC Genomics 10/2012; 13(1):564. DOI:10.1186/1471-2164-13-564 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flavobacterium columnare is a Gram-negative, rod-shaped, motile, and highly prevalent fish pathogen causing columnaris disease in freshwater fish worldwide. Here, we present the complete genome sequence of F. columnare strain ATCC 49512.
    Journal of bacteriology 05/2012; 194(10):2763-4. DOI:10.1128/JB.00281-12 · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human adenovirus species D type 19 (HAdV-D19) has been associated with epidemic keratoconjunctivitis (EKC), a highly inflammatory infection of the ocular surface. Confusion exists regarding the origins of HAdV-D19. The prototype virus (HAdV-D19p) does not cause EKC, while a virus identified later with the identical serologic determinant is a significant ocular pathogen. High throughput genome sequencing and bioinformatics analysis were performed on HAdV-D19p and three HAdV-D19 EKC strains, and compared to the previously sequenced clinical isolate, HAdV-D19 (C) and HAdV-D37. Corneas of C57BL/6J mice were injected with HAdV-D19p, HAdV-D19 (C), or virus-free buffer, and inflammation assessed by clinical examination, flow cytometry, and cytokine ELISA. Confocal microscopy and real-time PCR of infected corneal cell cultures were used to test viral entry. HAdV-D19 (C) and the other clinical EKC isolates showed nearly 100% sequence identity. EKC strains diverged from HAdV-D19p in the penton base, E3, and fiber transcription units. Simplot analysis showed recombination between EKC-associated HAdV-D19 with HAdV-D37, HAdV-D22, and HAdV-D19p, the latter contributing only the hexon gene, the principal serum neutralization determinant. HAdV-D19p induced stromal keratitis in the C57BL/6J mouse, but failed to infect productively human corneal epithelial cells. These data led to retyping of the clinical EKC isolates with a HAdV-D19 hexon gene as HAdV-D64. HAdV-D19 associated with EKC (HAdV-D64) originated from a recombination between HAdV-D19p, HAdV-D37, and HAdV-D22, and was mischaracterized because of a shared hexon gene. HAdV-D19p is not infectious for corneal epithelial cells, thus explaining the lack of any association with keratitis.
    Investigative ophthalmology & visual science 03/2012; 53(6):2804-11. DOI:10.1167/iovs.12-9656 · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In November of 2007 a human adenovirus (HAdV) was isolated from a bronchoalveolar lavage (BAL) sample recovered from a biopsy of an AIDS patient who presented with fever, cough, tachycardia, and expiratory wheezes. To better understand the isolated virus, the genome was sequenced and analyzed using bioinformatic and phylogenomic analysis. The results suggest that this novel virus, which is provisionally named HAdV-D59, may have been created from multiple recombination events. Specifically, the penton, hexon, and fiber genes have high nucleotide identity to HAdV-D19C, HAdV-D25, and HAdV-D56, respectively. Serological results demonstrated that HAdV-D59 has a neutralization profile that is similar yet not identical to that of HAdV-D25. Furthermore, we observed a two-fold difference between the ability of HAdV-D15 and HAdV-D25 to be neutralized by reciprocal antiserum indicating that the two hexon proteins may be more similar in epitopic conformation than previously assumed. In contrast, hexon loops 1 and 2 of HAdV-D15 and HAdV-D25 share 79.13 and 92.56 percent nucleotide identity, respectively. These data suggest that serology and genomics do not always correlate.
    PLoS ONE 03/2012; 7(3):e33212. DOI:10.1371/journal.pone.0033212 · 3.23 Impact Factor
  • Investigative ophthalmology & visual science 03/2012; · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Edwardsiella ictaluri is the cause of extensive mortalities and economic losses to the channel catfish industry of the southeast United States. Here we report the complete genome of Edwardsiella ictaluri 93-146. Whole-genome sequence analysis of E. ictaluri provides a tool for understanding the genomic regions specific to the species and the Edwardsiella genus.
    Journal of Bacteriology 02/2012; 194(3):740-1. DOI:10.1128/JB.06522-11 · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genome of human adenovirus (HAdV) D30 was sequenced in depth. Sequence assembly and analysis revealed two distinct viral sequences with identical hexon genes, which were the same as the one previously reported for HAdV-D30. However, one of the two viruses was found to be a recombinant of HAdV-D29. Exclusive reliance on serum neutralization can lead to mischaracterization of adenoviruses and miss coinfections. Whole-genome sequencing remains the gold standard for proper classification of HAdVs.
    Journal of Virology 02/2012; 86(8):4693-5. DOI:10.1128/JVI.06969-11 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have shown that the MpeR transcriptional regulator produced by Neisseria gonorrhoeae represses the expression of mtrF, which encodes a putative inner membrane protein (MtrF). MtrF works as an accessory protein with the Mtr efflux pump, helping gonococci to resist high levels of diverse hydrophobic antimicrobials. Regulation of mpeR has been reported to occur by an iron-dependent mechanism involving Fur (ferric uptake regulator). Collectively, these observations suggest the presence of an interconnected regulatory system in gonococci that modulates the expression of efflux pump protein-encoding genes in an iron-responsive manner. Herein, we describe this connection and report that levels of gonococcal resistance to a substrate of the mtrCDE-encoded efflux pump can be modulated by MpeR and the availability of free iron. Using microarray analysis, we found that the mtrR gene, which encodes a direct repressor (MtrR) of mtrCDE, is an MpeR-repressed determinant in the late logarithmic phase of growth when free iron levels would be reduced due to bacterial consumption. This repression was enhanced under conditions of iron limitation and resulted in increased expression of the mtrCDE efflux pump operon. Furthermore, as judged by DNA-binding analysis, MpeR-mediated repression of mtrR was direct. Collectively, our results indicate that both genetic and physiologic parameters (e.g., iron availability) can influence the expression of the mtr efflux system and modulate levels of gonococcal susceptibility to efflux pump substrates.
    Antimicrobial Agents and Chemotherapy 01/2012; 56(3):1491-501. DOI:10.1128/AAC.06112-11 · 4.45 Impact Factor

Publication Stats

3k Citations
346.30 Total Impact Points


  • 1994–2015
    • University of Oklahoma Health Sciences Center
      • Department of Microbiology and Immunology
      Oklahoma City, Oklahoma, United States
  • 2006–2014
    • Oklahoma City University
      Oklahoma City, Oklahoma, United States
  • 2012
    • Louisiana State University
      • School of Veterinary Medicine
      Baton Rouge, Louisiana, United States
    • Marmara University
      • Department of Biology
      İstanbul, Istanbul, Turkey
    • Harvard Medical School
      Boston, Massachusetts, United States
  • 2011
    • George Mason University
      • School of Systems Biology
      Fairfax, VA, United States
    • Virginia Polytechnic Institute and State University
      Blacksburg, Virginia, United States
  • 2009
    • David Grant USAF Medical Center
      Sacramento, California, United States
  • 1998–2004
    • University of Oklahoma
      • Department of Chemistry and Biochemistry
      Norman, Oklahoma, United States
  • 2001
    • Agricultural Research Service
      Kerrville, Texas, United States
  • 1990–1994
    • University at Buffalo, The State University of New York
      • • Department of Medicine
      • • School of Medicine and Biomedical Sciences
      • • Department of Oral Biology
      Buffalo, NY, United States
  • 1987–1989
    • University of North Carolina at Chapel Hill
      • • Department of Microbiology and Immunology
      • • Department of Medicine
      North Carolina, United States
    • Indiana University-Purdue University Indianapolis
      • Department of Medicine
      Indianapolis, Indiana, United States