Nick Brown

Swiss Tropical and Public Health Institute, Bâle, Basel-City, Switzerland

Are you Nick Brown?

Claim your profile

Publications (4)12.8 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Tanzania achieved universal coverage with long-lasting insecticidal nets (LLINs) in October 2011, after three years of free mass net distribution campaigns and is now faced with the challenge of maintaining high coverage as nets wear out and the population grows. A process of exploring options for a continuous or “Keep-Up” distribution system was initiated in early 2011. This paper presents for the first time a comprehensive national process to review the major considerations, findings and recommendations for the implementation of a new strategy. Methods Stakeholder meetings and site visits were conducted in five locations in Tanzania to garner stakeholder input on the proposed distribution systems. Coverage levels for LLINs and their decline over time were modelled using NetCALC software, taking realistic net decay rates, current demographic profiles and other relevant parameters into consideration. Costs of the different distribution systems were estimated using local data. Results LLIN delivery was considered via mass campaigns, Antenatal Care-Expanded Programme on Immunization (ANC/EPI), community-based distribution, schools, the commercial sector and different combinations of the above. Most approaches appeared unlikely to maintain universal coverage when used alone. Mass campaigns, even when combined with a continuation of the Tanzania National Voucher Scheme (TNVS), would produce large temporal fluctuations in coverage levels; over 10 years this strategy would require 63.3 million LLINs and a total cost of $444 million USD. Community mechanisms, while able to deliver the required numbers of LLINs, would require a massive scale-up in monitoring, evaluation and supervision systems to ensure accurate application of identification criteria at the community level. School-based approaches combined with the existing TNVS would reach most Tanzanian households and deliver 65.4 million LLINs over 10 years at a total cost of $449 million USD and ensure continuous coverage. The cost of each strategy was largely driven by the number of LLINs delivered. Conclusions The most cost-efficient strategy to maintain universal coverage is one that best optimizes the numbers of LLINs needed over time. A school-based approach using vouchers targeting all students in Standards 1, 3, 5, 7 and Forms 1 and 2 in combination with the TNVS appears to meet best the criteria of effectiveness, equity and efficiency.
    Malaria Journal 05/2013; 12(1):150. DOI:10.1186/1475-2875-12-150 · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are striking similarities in health system and other contexts between Tanzania and Ghana that are relevant to the scaling up of continuous delivery of insecticide treated nets (ITNs) for malaria prevention. However, specific contextual factors of relevance to ITN delivery have led implementation down very different pathways in the two countries. Both countries have made major efforts and investments to address this intervention through integrating consumer discount vouchers into the health system. Discount vouchers require arrangements among the public, private and non-governmental sectors and constitute a complex intervention in both health systems and business systems. In Tanzania, vouchers have moved beyond the planning agenda, had policies and programmes formulated, been sustained in implementation at national scale for many years and have become as of 2012 the main and only publicly supported continuous delivery system for ITNs. In Ghana national-scale implementation of vouchers never progressed beyond consideration on the agenda and piloting towards formulation of policy; and the approach was replaced by mass distribution campaigns with less dependency on or integration with the health system. By 2011, Ghana entered a phase with no publicly supported continuous delivery system for ITNs. To understand the different outcomes, we compared the voucher programme timelines, phases, processes and contexts in both countries in reference to the main health system building blocks (governance, human resources, financing, informatics, technologies and service delivery). Contextual factors which provided an enabling environment for the voucher scheme in Tanzania did not do so in Ghana. The voucher scheme was never seen as an appropriate national strategy, other delivery systems were not complementary and the private sector was under-developed. The extensive time devoted to engagement and consensus building among all stakeholders in Tanzania was an important and clearly enabling difference, as was public sector support of the private sector. This contributed to the alignment of partner action behind a single co-ordinated strategy at service delivery level which in turn gave confidence to the business sector and avoided the 'interference' of competing delivery systems that occurred in Ghana. Principles of systems thinking for intervention design correctly emphasize the importance of enabling contexts and stakeholder management.
    Health Policy and Planning 10/2012; 27 Suppl 4(Suppl 4):iv32-iv43. DOI:10.1093/heapol/czs087 · 3.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: After a national voucher scheme in 2004 provided pregnant women and infants with highly subsidized insecticide-treated nets (ITNs), use among children under five years (U5s) in mainland Tanzania increased from 16% in 2004 to 26.2% in 2007. In 2008, the Ministry of Health and Social Welfare planned a catch-up campaign to rapidly and equitably deliver a free long-lasting insecticidal net (LLIN) to every child under five years in Tanzania. The ITN Cell, a unit within the National Malaria Control Programme (NMCP), coordinated the campaign on behalf of the Ministry of Health and Social Welfare. Government contractors trained and facilitated local government officials to supervise village-level volunteers on a registration of all U5s and the distribution and issuing of LLINs. The registration results formed the basis for the LLIN order and delivery to village level. Caregivers brought their registration coupons to village issuing posts during a three-day period where they received LLINs for their U5s. Household surveys in five districts assessed ITN ownership and use immediately after the campaign. Nine donors contributed to the national campaign that purchased and distributed 9.0 million LLINs at an average cost of $7.07 per LLIN, including all campaign-associated activities. The campaign covered all eight zones of mainland Tanzania, the first region being covered separately during an integrated measles immunization/malaria LLIN distribution in August 2008, and was implemented one zone at a time from March 2009 until May 2010. ITN ownership at household level increased from Tanzania's 2008 national average of 45.7% to 63.4%, with significant regional variations. ITN use among U5s increased from 28.8% to 64.1%, a 2.2-fold increase, with increases ranging from 22.1-38.3% percentage points in different regions. A national-level LLIN distribution strategy that fully engaged local government authorities helped avoid additional burden on the healthcare system. Distribution costs per net were comparable to other public health interventions. Particularly among rural residents, ITN ownership and use increased significantly for the intended beneficiaries. The upcoming universal LLIN distribution and further behaviour change communication will further improve ITN ownership and use in 2010-2011.
    Malaria Journal 03/2011; 10(1):73. DOI:10.1186/1475-2875-10-73 · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Five large insecticide-treated net (ITN) programmes and two indoor residual spraying (IRS) programmes were compared using a standardized costing methodology. Costs were measured locally or derived from existing studies and focused on the provider perspective, but included the direct costs of net purchases by users, and are reported in 2005 USD. Effectiveness was estimated by combining programme outputs with standard impact indicators. Conventional ITNs: The cost per treated net-year of protection ranged from USD 1.21 in Eritrea to USD 6.05 in Senegal. The cost per child death averted ranged from USD 438 to USD 2,199 when targeting to children was successful.Long-lasting insecticidal nets (LLIN) of five years duration: The cost per treated-net year of protection ranged from USD 1.38 in Eritrea to USD 1.90 in Togo. The cost per child death averted ranged from USD 502 to USD 692.IRS: The costs per person-year of protection for all ages were USD 3.27 in KwaZulu Natal and USD 3.90 in Mozambique. If only children under five years of age were included in the denominator the cost per person-year of protection was higher: USD 23.96 and USD 21.63. As a result, the cost per child death averted was higher than for ITNs: USD 3,933-4,357. Both ITNs and IRS are highly cost-effective vector control strategies. Integrated ITN free distribution campaigns appeared to be the most efficient way to rapidly increase ITN coverage. Other approaches were as or more cost-effective, and appeared better suited to "keep-up" coverage levels. ITNs are more cost-effective than IRS for highly endemic settings, especially if high ITN coverage can be achieved with some demographic targeting.
    Malaria Journal 01/2009; 7(1):258. DOI:10.1186/1475-2875-7-258 · 3.11 Impact Factor

Publication Stats

115 Citations
12.80 Total Impact Points


  • 2009-2013
    • Swiss Tropical and Public Health Institute
      • Department of Epidemiology and Public Health
      Bâle, Basel-City, Switzerland