Arturo Villanueva

Harbor-UCLA Medical Center, Torrance, California, United States

Are you Arturo Villanueva?

Claim your profile

Publications (6)33.89 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been demonstrated that large numbers of tumor-specific T cells for adoptive cell transfer (ACT) can be manufactured by retroviral genetic engineering of autologous peripheral blood lymphocytes and expanding them over several weeks. In mouse models, this therapy is optimized when administered with dendritic cell (DC) vaccination. We developed a short one-week manufacture protocol to determine the feasibility, safety and antitumor efficacy of this double cell therapy. A clinical trial (NCT00910650) adoptively transferring MART-1 T cell receptor (TCR) transgenic lymphocytes together with MART-1 peptide pulsed DC vaccination in HLA-A2.1 patients with metastatic melanoma. Autologous TCR transgenic cells were manufactured in 6 to 7 days using retroviral vector gene transfer, and re-infused with (n = 10) or without (n = 3) prior cryopreservation. 14 patients with metastatic melanoma were enrolled and nine out of 13 treated patients (69%) showed evidence of tumor regression. Peripheral blood reconstitution with MART-1-specific T cells peaked within two weeks of ACT indicating rapid in vivo expansion. Administration of freshly manufactured TCR transgenic T cells resulted in a higher persistence of MART-1-specific T cells in the blood as compared to cryopreserved. Evidence that DC vaccination could cause further in vivo expansion was only observed with ACT using non-cryopreserved T cells. Double cell therapy with ACT of TCR engineered T cells with a very short ex vivo manipulation and DC vaccines is feasible and results in antitumor activity, but improvements are needed to maintain tumor responses.
    Clinical Cancer Research 03/2014; · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CTLA4 blocking monoclonal antibodies provide durable clinical benefit in a subset of patients with advanced melanoma mediated by intratumoral lymphocytic infiltrates. A key question is defining whether the intratumoral infiltration (ITI) is a differentiating factor between patients with and without tumor responses. Paired baseline and postdosing tumor biopsy specimens were prospectively collected from 19 patients with metastatic melanoma, including 3 patients with an objective tumor response, receiving the anti-CTLA4 antibody tremelimumab within a clinical trial with primary endpoint of quantitating CD8(+) cytotoxic T-lymphocyte (CTL) infiltration in tumors. Samples were analyzed for cell density by automated imaging capture and further characterized for functional lymphocyte properties by assessing the cell activation markers HLA-DR and CD45RO, the cell proliferation marker Ki67, and the regulatory T-cell marker FOXP3. There was a highly significant increase in ITI by CD8(+) cells in biopsy samples taken after tremelimumab treatment. This included increases between 1-fold and 100-fold changes in 14 of 18 evaluable cases regardless of clinical tumor response or progression. There was no difference between the absolute number, location, or cell density of infiltrating cells between clinical responders and patients with nonresponding lesions that showed acquired intratumoral infiltrates. There were similar levels of expression of T-cell activation markers (CD45RO, HLA-DR) in both groups and no difference in markers for cell replication (Ki67) or the suppressor cell marker FOXP3. CTLA4 blockade induces frequent increases in ITI by T cells despite which only a minority of patients have objective tumor responses.
    Clinical Cancer Research 06/2011; 17(12):4101-9. · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several single center studies have provided evidence of immune activation and antitumor activity of therapeutic vaccination with dendritic cells (DC) in patients with metastatic melanoma. The efficacy of this approach in patients with favorable prognosis metastatic melanoma limited to the skin, subcutaneous tissues and lung (stages IIIc, M1a, M1b) was tested in a multicenter two stage phase 2 study with centralized DC manufacturing. The vaccine (IDD-3) consisted 8 doses of autologous monocyte-derived matured DC generated in serum-free medium with granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-13 (IL-13), pulsed with lysates of three allogeneic melanoma cell lines, and matured with interferon gamma. The primary endpoint was antitumor activity. Among 33 patients who received IDD-3 there was one complete response (CR), two partial responses (PR), and six patients had stable disease (SD) lasting more than eight weeks. The overall prospectively defined tumor growth control rate was 27% (90% confidence interval of 13-46%). IDD-3 administration had minimal toxicity and it resulted in a high frequency of immune activation to immunizing melanoma antigens as assessed by in vitro immune monitoring assays. The administration of matured DC loaded with tumor lysates has significant immunogenicity and antitumor activity in patients with limited metastatic melanoma. NCT00107159.
    Journal of Translational Medicine 01/2010; 8:89. · 3.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Background Several single center studies have provided evidence of immune activation and antitumor activity of therapeutic vaccination with dendritic cells (DC) in patients with metastatic melanoma. The efficacy of this approach in patients with favorable prognosis metastatic melanoma limited to the skin, subcutaneous tissues and lung (stages IIIc, M1a, M1b) was tested in a multicenter two stage phase 2 study with centralized DC manufacturing. Methods The vaccine (IDD-3) consisted 8 doses of autologous monocyte-derived matured DC generated in serum-free medium with granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-13 (IL-13), pulsed with lysates of three allogeneic melanoma cell lines, and matured with interferon gamma. The primary endpoint was antitumor activity. Results Among 33 patients who received IDD-3 there was one complete response (CR), two partial responses (PR), and six patients had stable disease (SD) lasting more than eight weeks. The overall prospectively defined tumor growth control rate was 27% (90% confidence interval of 13-46%). IDD-3 administration had minimal toxicity and it resulted in a high frequency of immune activation to immunizing melanoma antigens as assessed by in vitro immune monitoring assays. Conclusions The administration of matured DC loaded with tumor lysates has significant immunogenicity and antitumor activity in patients with limited metastatic melanoma. Clinical trial registration NCT00107159.
    Journal of Translational Medicine 01/2010; · 3.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor antigen-loaded dendritic cells (DC) are believed to activate antitumor immunity by stimulating T cells, and CTL-associated antigen 4 (CTLA4)-blocking antibodies should release a key negative regulatory pathway on T cells. The combination was tested in a phase I clinical trial in patients with advanced melanoma. Autologous DC were pulsed with MART-1(26-35) peptide and administered with a dose escalation of the CTLA4-blocking antibody tremelimumab. Sixteen patients were accrued to five dose levels. Primary end points were safety and immune effects; clinical efficacy was a secondary end point. Dose-limiting toxicities of grade 3 diarrhea and grade 2 hypophysitis developed in two of three patients receiving tremelimumab at 10 mg/kg monthly. Four patients had an objective tumor response, two partial responses and two complete responses, all melanoma free between 2 and 4 years after study initiation. There was no difference in immune monitoring results between patients with an objective tumor response and those without a response. Exploratory gene expression analysis suggested that immune-related gene signatures, in particular for B-cell function, may be important in predicting response. The combination of MART-1 peptide-pulsed DC and tremelimumab results in objective and durable tumor responses at the higher range of the expected response rate with either agent alone.
    Clinical Cancer Research 10/2009; 15(19):6267-76. · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CTLA4-blocking antibodies induce tumor regression in a subset of patients with melanoma. Analysis of immune parameters in peripheral blood may help define how responses are mediated. Peripheral blood from HLA-A*0201-positive patients with advanced melanoma receiving tremelimumab (formerly CP-675,206) at 10 mg/kg monthly was repeatedly sampled during the first 4 cycles. Samples were analyzed by 1) tetramer and ELISPOT assays for reactivity to CMV, EBV, MART1, gp100, and tyrosinase; 2) activation HLA-DR and memory CD45RO markers on CD4+/CD8+ cells; and 3) real-time quantitative PCR of mRNA for FoxP3 transcription factor, preferentially expressed by T regulatory cells. The primary endpoint was difference in MART1-specific T cells by tetramer assay. Immunological data were explored for significant trends using clustering analysis. Three of 12 patients eligible for immune monitoring had tumor regression lasting > 2 years without relapse. There was no significant change in percent of MART1-specific T cells by tetramer assay. Additionally, there was no generalized trend toward postdosing changes in other antigen-specific CD8+ cell populations, FoxP3 transcripts, or overall changes in surface expression of T-cell activation or memory markers. Unsupervised hierarchical clustering based on immune monitoring data segregated patients randomly. However, clustering according to T-cell activation or memory markers separated patients with clinical response and most patients with inflammatory toxicity into a common subgroup. Administration of CTLA4-blocking antibody tremelimumab to patients with advanced melanoma results in a subset of patients with long-lived tumor responses. T-cell activation and memory markers served as the only readout of the pharmacodynamic effects of this antibody in peripheral blood. NCT00086489.
    Journal of Translational Medicine 01/2008; 6:22. · 3.46 Impact Factor

Publication Stats

127 Citations
33.89 Total Impact Points

Institutions

  • 2011
    • Harbor-UCLA Medical Center
      Torrance, California, United States
  • 2008–2011
    • University of California, Los Angeles
      • • Department of Medicine
      • • Division of Surgical Oncology
      Los Angeles, California, United States