E. Plagnol

Paris Diderot University, Lutetia Parisorum, Île-de-France, France

Are you E. Plagnol?

Claim your profile

Publications (186)266.42 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LISA Pathfinder (LPF), ESA's precursor mission to a gravitational wave observatory, will measure the degree to which two test-masses can be put into free-fall, aiming to demonstrate a residual relative acceleration with a power spectral density (PSD) below 30 fm/s$^2$/Hz$^{1/2}$ around 1 mHz. In LPF data analysis, the measured relative acceleration data series must be fit to other various measured time series data. This fitting is required in different experiments, from system identification of the test mass and satellite dynamics to the subtraction of noise contributions from measured known disturbances. In all cases, the background noise, described by the PSD of the fit residuals, is expected to be coloured, requiring that we perform such fits in the frequency domain. This PSD is unknown {\it a priori}, and a high accuracy estimate of this residual acceleration noise is an essential output of our analysis. In this paper we present a fitting method based on Bayesian parameter estimation with an unknown frequency-dependent background noise. The method uses noise marginalisation in connection with averaged Welch's periodograms to achieve unbiased parameter estimation, together with a consistent, non-parametric estimate of the residual PSD. Additionally, we find that the method is equivalent to some implementations of iteratively re-weighted least-squares fitting. We have tested the method both on simulated data of known PSD, and to analyze differential acceleration from several experiments with the LISA Pathfinder end-to-end mission simulator.
    Physical Review D 04/2014; 90(4). · 4.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a parameter estimation procedure based on a Bayesian framework by applying a Markov Chain Monte Carlo algorithm to the calibration of the dynamical parameters of the LISA Pathfinder satellite. The method is based on the Metropolis-Hastings algorithm and a two-stage annealing treatment in order to ensure an effective exploration of the parameter space at the beginning of the chain. We compare two versions of the algorithm with an application to a LISA Pathfinder data analysis problem. The two algorithms share the same heating strategy but with one moving in coordinate directions using proposals from a multivariate Gaussian distribution, while the other uses the natural logarithm of some parameters and proposes jumps in the eigen-space of the Fisher Information matrix. The algorithm proposing jumps in the eigen-space of the Fisher Information matrix demonstrates a higher acceptance rate and a slightly better convergence towards the equilibrium parameter distributions in the application to LISA Pathfinder data. For this experiment, we return parameter values that are all within ∼1σ of the injected values. When we analyse the accuracy of our parameter estimation in terms of the effect they have on the force-per-unit of mass noise, we find that the induced errors are three orders of magnitude less than the expected experimental uncertainty in the power spectral density.
    Experimental Astronomy 02/2014; · 2.97 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LISA Pathfinder is a mission planned by the European Space Agency to test the key technologies that will allow the detection of gravitational waves in space. The instrument on-board, the LISA Technology package, will undergo an exhaustive campaign of calibrations and noise characterisation campaigns in order to fully describe the noise model. Data analysis plays an important role in the mission and for that reason the data analysis team has been developing a toolbox which contains all the functionalities required during operations. In this contribution we give an overview of recent activities, focusing on the improvements in the modelling of the instrument and in the data analysis campaigns performed both with real and simulated data.
    06/2013;
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The last century has seen enormous progress in our understanding of the Universe. We know the life cycles of stars, the structure of galaxies, the remnants of the big bang, and have a general understanding of how the Universe evolved. We have come remarkably far using electromagnetic radiation as our tool for observing the Universe. However, gravity is the engine behind many of the processes in the Universe, and much of its action is dark. Opening a gravitational window on the Universe will let us go further than any alternative. Gravity has its own messenger: Gravitational waves, ripples in the fabric of spacetime. They travel essentially undisturbed and let us peer deep into the formation of the first seed black holes, exploring redshifts as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite and unprecedented measurements of black hole masses and spins will make it possible to trace the history of black holes across all stages of galaxy evolution, and at the same time constrain any deviation from the Kerr metric of General Relativity. eLISA will be the first ever mission to study the entire Universe with gravitational waves. eLISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using gravitational waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the early processes at TeV energies, has guaranteed sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales around singularities and black holes, all the way to cosmological dimensions.
    http://arxiv.org/abs/1305.5720. 05/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The main goal of the LISA Pathfinder (LPF) mission is to fully characterize the acceleration noise models and to test key technologies for future space-based gravitational-wave observatories similar to the LISA/eLISA concept. The Data Analysis (DA) team has developed complex three-dimensional models of the LISA Technology Package (LTP) experiment on-board LPF. These models are used for simulations, but more importantly, they will be used for parameter estimation purposes during flight operations. One of the tasks of the DA team is to identify the physical effects that contribute significantly to the properties of the instrument noise. A way of approaching to this problem is to recover the essential parameters of the LTP which describe the data. Thus, we want to define the simplest model that efficiently explains the observations. To do so, adopting a Bayesian framework, one has to estimate the so-called Bayes Factor between two competing models. In our analysis, we use three main different methods to estimate it: The Reversible Jump Markov Chain Monte Carlo method, the Schwarz criterion, and the Laplace approximation. They are applied first to toy models and then, they are verified with full LTP models, where we investigate the correlation of the output of these methods with the design of the experiment itself.
    04/2013; 89(6).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Mock LISA data challenges are a program to demonstrate LISA data-analysis capabilities and to encourage their development. Each round of challenges consists of several data sets containing simulated instrument noise and gravitational waves from sources of undisclosed parameters. Participants are asked to analyze the data sets and report the maximum information about the source parameters. The challenges are being released in rounds of increasing complexity and realism: here we present the results of Challenge 2, issued in Jan 2007, which successfully demonstrated the recovery of signals from nonspinning supermassive-black-hole binaries with optimal SNRs between ~10 and 2000, from ~20 000 overlapping galactic white-dwarf binaries (among a realistically distributed population of 26 million), and from the extreme-mass-ratio inspirals of compact objects into central galactic black holes with optimal SNRs ~100
    Classical and Quantum Gravity 01/2013; 25(11):114037. · 3.56 Impact Factor
  • G. Auger, P. Binétruy, E. Plagnol
    01/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Data analysis for the eLISA/NGO mission is going to be performed in several steps. The telemetry is unpacked and checked at ESA's Science Operations Centre (SOC). The instrument teams are providing the necessary calibration files for the SOC to process the Level 1 data. The next steps, the source identification, parameter extraction and construction of a catalogue of sources is performed at the Data Processing Centre (DPC). This includes determining the physical and astrophysical parameters of the sources and their strain time series. At the end of the processing, the produced Level 2 and Level 3 data are then transferred back to the SOC, which provides the data archive and the interface for the scientific community. The DPC is organised by the member states of the consortium. In this paper we describe a possible outline of the data processing centre, including the tasks to be performed, and the organisational structure.
    01/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a parameter estimation procedure based on a Bayesian framework by applying a Markov Chain Monte Carlo algorithm to the calibration of the dynamical parameters of a space based gravitational wave detector. The method is based on the Metropolis-Hastings algorithm and a two-stage annealing treatment in order to ensure an effective exploration of the parameter space at the beginning of the chain. We compare two versions of the algorithm with an application to a LISA Pathfinder data analysis problem. The two algorithms share the same heating strategy but with one moving in coordinate directions using proposals from a multivariate Gaussian distribution, while the other uses the natural logarithm of some parameters and proposes jumps in the eigen-space of the Fisher Information matrix. The algorithm proposing jumps in the eigen-space of the Fisher Information matrix demonstrates a higher acceptance rate and a slightly better convergence towards the equilibrium parameter distributions in the application to LISA Pathfinder data . For this experiment, we return parameter values that are all within $\sim1\sigma$ of the injected values. When we analyse the accuracy of our parameter estimation in terms of the effect they have on the force-per-unit test mass noise estimate, we find that the induced errors are three orders of magnitude less than the expected experimental uncertainty in the power spectral density.
    11/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we describe the current status of the LISA Pathfinder mission, a precursor mission aimed at demonstrating key technologies for future space-based gravitational wave detectors, like LISA. Since much of the flight hardware has already been constructed and tested, we will show that performance measurements and analysis of these flight components lead to an expected performance of the LISA Pathfinder which is a significant improvement over the mission requirements, and which actually reaches the LISA requirements over the entire LISA Pathfinder measurement band.
    Classical and Quantum Gravity 06/2012; 29(12):124014. · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this proceeding we report on alpha particle emission through the nuclear break-up in the reaction 40Ca on a 40Ca target at 50A MeV. It is observed that alpha particles are emitted to the continuum with very specific angular distribution during the reaction. The alpha particle properties seem to be compatible with an alpha cluster in the daughter nucleus that is perturbed by the short range nuclear attraction of the collision partner and emitted as described by a time-dependent theory. This mechanism offers new possibilities to study alpha particle properties in the nuclear medium.
    International Journal of Modern Physics E 05/2012; 20(04). · 0.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The analysis of the noise sources perturbing a test mass (TM) geodesic motion is the main scientific objective of the LISA Technology Package experiment (LTP) on board of the LISA Pathfinder space mission. Information on force noise acting on TMs are obtained with a data reduction procedure involving system parameters. Such parameters can be estimated from dedicated experimental runs. Therefore the final estimation of force noise is affected by two sources of uncertainty. One is statistical and connected to the random nature of noisy signals. The other is connected to the uncertainties on the system parameters. The analysis of simulated LTP data is indicating that the major contribution to the force noise power spectral density uncertainties is coming from the statistical properties of the spectrum estimator.
    11/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The precursor ESA mission LISA-Pathfinder, to be flown in 2013, aims at demonstrating the feasibility of the free-fall, necessary for LISA, the upcoming space-born gravitational wave observatory. LISA Technology Package (LTP) is planned to carry out a number of experiments, whose main targets are to identify and measure the disturbances on each test-mass, in order to reach an unprecedented low-level residual force noise. To fulfill this plan, it is then necessary to correctly design, set-up and optimize the experiments to be performed on-flight and do a full system parameter estimation. Here we describe the progress on the non-linear analysis using the methods developed in the framework of the \textit{LTPDA Toolbox}, an object-oriented MATLAB Data Analysis environment: the effort is to identify the critical parameters and remove the degeneracy by properly combining the results of different experiments coming from a closed-loop system like LTP.
    08/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Preparations for the LISA Pathfinder mission have reached an exciting stage. Tests of the engineering model (EM) of the optical metrology system have recently been completed at the Albert Einstein Institute, Hannover, and flight model tests are now underway. Significantly, they represent the first complete integration and testing of the space-qualified hardware and are the first tests on an optical system level. The results and test procedures of these campaigns will be utilized directly in the ground-based flight hardware tests, and subsequently during in-flight operations. In addition, they allow valuable testing of the data analysis methods using the MATLAB-based LTP data analysis toolbox. This paper presents an overview of the results from the EM test campaign that was successfully completed in December 2009.
    Classical and Quantum Gravity 04/2011; 28(9):094003. · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As the launch of LISA Pathfinder (LPF) draws near, more and more effort is being put in to the preparation of the data analysis activities that will be carried out during the mission operations. The operations phase of the mission will be composed of a series of experiments that will be carried out on the satellite. These experiments will be directed and analysed by the data analysis team, which is part of the operations team. The operations phase will last about 90 days, during which time the data analysis team aims to fully characterize the LPF, and in particular, its core instrument the LISA Technology Package. By analysing the various couplings present in the system, the different noise sources that will disturb the system, and through the identification of the key physical parameters of the system, a detailed noise budget of the instrument will be constructed that will allow the performance of the different subsystems to be assessed and projected towards LISA. This paper describes the various aspects of the full data analysis chain that are needed to successfully characterize the LPF and build up the noise budget during mission operations.
    Classical and Quantum Gravity 04/2011; 28(9):094006. · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun–Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500 000 km by 800 000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch.
    Classical and Quantum Gravity 04/2011; 28(9):094001. · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a quantitative assessment of the performance of the upcoming LISA Pathfinder geodesic explorer mission. The findings are based on the results of extensive ground testing and simulation campaigns using flight hardware and flight control and operations algorithms. The results show that, for the central experiment of measuring the stray differential acceleration between the LISA test masses, LISA Pathfinder will be able to verify the overall acceleration noise to within a factor two of the LISA requirement at 1 mHz and within a factor 6 at 0.1 mHz. We also discuss the key elements of the physical model of disturbances, coming from LISA Pathfinder and ground measurement, that will guarantee the LISA performance.
    Classical and Quantum Gravity 12/2010; 28(9). · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this Rapid Communication, we report on α-particle emission through the nuclear breakup in the reaction 40Ca on a 40Ca target at 50 A MeV. It is observed that, similar to nucleons, α particles can be emitted to the continuum with very specific angular distribution during the reaction. The α-particle properties seem to be compatible with an α cluster in the daughter nucleus that is perturbed and is emitted by the short-range nuclear attraction of the collision partner. A time-dependent theory that describes the α-particle wave-function evolution is able to qualitatively reproduce the observed angular distribution. This mechanism offers new possibilities for studying α-particle properties in the nuclear medium.
    Physical Review C 09/2010; 82(3). · 3.72 Impact Factor

Publication Stats

943 Citations
266.42 Total Impact Points

Institutions

  • 2009–2014
    • Paris Diderot University
      Lutetia Parisorum, Île-de-France, France
    • Université de Vincennes - Paris 8
      Saint-Denis, Île-de-France, France
  • 1999–2010
    • Université Paris-Sud 11
      • Institut de Physique Nucléaire (IPN)
      Paris, Ile-de-France, France
  • 1978–2004
    • Institut de Physique Nucléaire de Lyon
      Lyons, Rhône-Alpes, France
  • 2003
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
      Bucureşti, Bucureşti, Romania
  • 2000
    • Conservatoire National des Arts et Métiers
      Lutetia Parisorum, Île-de-France, France
  • 1985–1998
    • GANIL
      Caen, Lower Normandy, France
  • 1993
    • University of São Paulo
      San Paulo, São Paulo, Brazil
  • 1992
    • Lawrence Berkeley National Laboratory
      • Nuclear Science Division
      Berkeley, CA, United States
  • 1991–1992
    • Grand Accélérateur National d'Ions Lourds
      Caen, Lower Normandy, France
  • 1988
    • University of California, Berkeley
      Berkeley, California, United States