Martial Taillefert

Georgia Institute of Technology, Atlanta, Georgia, United States

Are you Martial Taillefert?

Claim your profile

Publications (49)175.37 Total impact

  • Hui Lin, Martial Taillefert
    [Show abstract] [Hide abstract]
    ABSTRACT: The reduction of Mn(IV) oxides coupled to the anaerobic oxidation of NH4+ has been proposed for more than a decade to contribute to the fixed nitrogen pool in marine sediments, yet the existence of this process is still under debate. In this study, surface sediments from an intertidal salt marsh were incubated with MnO2 in the presence of elevated concentrations of NH4+ to test the hypothesis that the reduction of Mn(IV) oxides catalyzes anaerobic NH4+ oxidation to NO2- or NO3-. Geochemical factors such as the ratio of Mn(IV) to NH4+, the type of Mn(IV) oxides (amorphous or colloidal MnO2), and the redox potential of the sediment significantly affect the activity of anaerobic nitrification. Incubations show that the net production of NO3- is stimulated under anaerobic conditions with external addition of colloidal but not amorphous MnO2 and is facilitated by the presence of high concentrations of NH4+. Mass balance calculations demonstrate that anaerobic NH4+ oxidation contributes to the net consumption of NH4+, providing another piece of evidence for the occurrence of Mn(IV)-catalyzed anaerobic nitrification in coastal marine sediments. Finally, anaerobic nitrification is stimulated by the amendment of small concentrations of NO3- or the absence of sulfate reduction, suggesting that moderately reducing conditions favor anaerobic NH4+ oxidation. Overall, these findings suggest that Mn(IV)-catalyzed anaerobic nitrification in suboxic sediments with high N/Mn concentration ratios and highly reactive manganese oxides may be an important source of NO2- and NO3- for subsequent marine nitrogen loss via denitrification or anammox.
    Geochimica et Cosmochimica Acta 05/2014; 133:17–33. · 3.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments.
    PLoS ONE 01/2014; 9(6):e100383. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although bioreduction of uranyl ions (U(VI)) and biomineralization of U(VI)–phosphate minerals are both able to immobilize uranium in contaminated sediments, the competition between these processes and the role of anaerobic respiration in the biomineralization of U(VI)–phosphate minerals has yet to be investigated. In this study, contaminated sediments incubated anaerobically in static microcosms at pH 5.5 and 7.0 were amended with the organophosphate glycerol-2-phosphate (G2P) as sole phosphorus and external carbon source and iron oxides, sulfate, or nitrate as terminal electron acceptors to determine the most favorable geochemical conditions to these two processes. While sulfate reduction was not observed even in the presence of G2P at both pHs, iron reduction was more significant at circumneutral pH irrespective of the addition of G2P. In turn, nitrate reduction was stimulated by G2P at both pH 5.5 and 7.0, suggesting nitrate-reducing bacteria provided the main source of inorganic phosphate in these sediments. U(VI) was rapidly removed from solution in all treatments but was not reduced as determined by X-ray absorption near edge structure (XANES) spectroscopy. Simultaneously, wet chemical extractions and extended X-ray absorption fine structure (EXAFS) spectroscopy of these sediments indicated the presence of U–P species in reactors amended with G2P at both pHs. The rapid removal of dissolved U(VI), the simultaneous production of inorganic phosphate, and the existence of U–P species in the solid phase indicate that uranium was precipitated as U(VI)–phosphate minerals in sediments amended with G2P. Thus, under reducing conditions and in the presence of G2P, bioreduction of U(VI) was outcompeted by the biomineralization of U(VI)–phosphate minerals and U(VI) sorption at both pHs.
    Geochimica et Cosmochimica Acta 04/2013; 106:344–363. · 3.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mn(IV) and Mn(II) are the most stable and prevalent forms of manganese in natural environments. The occurrence of Mn(III) in minerals and the detection of soluble Mn(III) in natural waters, however, suggest that Mn(III) is an intermediate in both the oxidation of Mn(II) and the reduction of Mn(IV). Mn(III) has recently been proposed as an intermediate during the oxidation of Mn(II) by Mn-oxidizing bacteria but has never been considered as an intermediate during the bio-reduction of Mn(IV). Here we show for the first time that microbial Mn(IV) reduction proceeds step-wise via two successive one-electron transfer reactions with production of soluble Mn(III) as transient intermediate. Incubations with mutant strains demonstrate that the reduction of both solid Mn(IV) and soluble Mn(III) occurs at the outer membrane of the cell. In addition, pseudo-first order rate constants obtained from these incubations indicate that Mn(IV) respiration involves only one of the two potential terminal reductases (c-type cytochrome MtrC and OmcA) involved in Fe(III) respiration. More importantly, only the second electron transfer step is coupled to production of dissolved inorganic carbon, suggesting that the first electron transfer reaction is a reductive solubilization step that increases Mn bioavailability. These findings oppose the long-standing paradigm that microbial Mn(IV) reduction proceeds via a single two-electron transfer reaction coupled to organic carbon oxidation, and suggest that diagenetic models should be revised to correctly account for the impact of manganese reduction in the global carbon cycle.
    Geochimica et Cosmochimica Acta 12/2012; 99:179–192. · 3.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The upper basin of Effingham Inlet possesses permanently anoxic bottom waters, with a water column redox transition zone typically occurring at least 40 m above the sediment-water interface. During our sampling campaign in April and July 2007, this redox transition zone was associated with sharp peaks in a variety of parameters, including soluble reactive phosphorus (SRP) and total particulate phosphorus (TPP). Based on sequential extraction results, TPP maxima exhibited preferential accumulation of an operationally defined class of loosely adsorbed organic phosphorus (P), which may contain a substantial fraction of polyphosphate (poly-P). This poly-P may furthermore be involved in the redox-dependent remobilization of SRP. For example, direct fluorometric analysis of poly-P content revealed that particulate inorganic poly-P was present at concentrations ranging from 1 to 9 nM P within and several meters above the TPP maximum. Below the depth of 1% oxygen saturation, however, particulate inorganic poly-P was undetectable (<0.8 nM in situ). Assuming this concentration profile reflects the remineralization of inorganic poly-P to SRP across the redox transition, inorganic poly-P degradation accounted for as much as 4 ± 3% (average ± standard deviation) to 9 ± 8% of the vertical turbulent diffusive SRP flux. This finding is a conservative estimate due in part to sample storage effects associated with our analysis of poly-P content. By comparison, iron-linked P cycling accounted for at most 65 ± 33% of the diffusive SRP flux, leaving ˜25% unaccounted for. Thus, while redox-sensitive poly-P remineralization in Effingham Inlet appears modest based on our direct conservative estimate, it may be higher from a mass balance viewpoint. Poly-P cycling may therefore be an overlooked mechanism for the redox-sensitive cycling of P in some hypoxic/anoxic boundaries, especially iron-poor marine oxygen minimum zones.
    Global Biogeochemical Cycles 06/2012; 26(2):2040-. · 4.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Soils and groundwater contaminated with heavy metals and radionuclides remain a legacy of Cold War nuclear weapons development. Due to the scale of environmental contamination, in situ sequestration of heavy metals and radionuclides remain the most cost-effective strategy for remediation. We are currently investigating a remediation approach that utilizes periplasmic and extracellular microbial phosphatase activity of soil bacteria capable promoting in situ uranium phosphate sequestration. Our studies focus on the contaminated soils from the DOE Field Research Center (ORFRC) in Oak Ridge, TN. We have previously demonstrated that ORFRC strains with phosphatase-positive phenotypes were capable of promoting the precpitation of >95% U(VI) as a low solubility phosphate mineral during growth on glycerol phosphate as a sole carbon and phosphorus source. Here we present culture-independent soil slurry studies aimed at understanding microbial community dynamics resulting from exogenous organophosphate additions. Soil slurries containing glycerol-2-phosphate (G2P) or glycerol-3-phosphate (G3P) and nitrate as the sole C, P and N sources were incubated under oxic growth conditions at pH 5.5 or pH 6.8. Following treatments, total DNA was extracted and prokaryotic diversity was assessed using high-density 16S oligonucleotide microarray (PhyloChip) analysis. Treatments at pH 5.5 and pH 6.8 amended with G2P required 36 days to accumulate 4.8mM and 2.2 mM phosphate, respectively. In contrast, treatments at pH 5.5 and pH 6.8 amended with G3P accumulated 8.9 mM and 8.7 mM phosphate, respectively, after 20 days. A total of 2120 unique taxa representing 46 phyla, 66 classes, 110 orders, and 186 families were detected among all treatment conditions. The phyla that significantly (P<0.05) increased in abundance relative to incubations lacking organophosphate amendments included: Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria. Members from the classes Bacteroidetes, Sphingobacteria, α-proteobacteria, and γ-proteobacteria increased in relative abundance by 10 to 406-fold. These are the first PhyloChip studies that identify unique subsurface community responses to organophosphate substrates as well as demonstrate the diversity of the extant ORFRC microbial community capable of promoting in situ uranium phosphate sequestration. These studies also indicate that concentrations of phosphate released into extracellular space can be controlled by the type of substrate supplied to soil microbial communities. Additionally, we will present data summarizing the two Rahnella genome sequencing projects (Rahnella sp. Y9602 and the Rahnella aquatilis ATCC 33071) completed by the Joint Genome Institute.
    AGU Fall Meeting Abstracts. 12/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The biomineralization of U(VI) phosphate as a result of microbial phosphatase activity is a promising new bioremediation approach to immobilize uranium in both aerobic and anaerobic conditions. In contrast to reduced uranium minerals such as uraninite, uranium phosphate precipitates are not susceptible to changes in oxidation conditions and may represent a long-term sink for uranium in contaminated environments. So far, the biomineralization of U(VI) phosphate has been demonstrated with pure cultures only. In this study, two uranium contaminated soils from the Department of Energy Oak Ridge Field Research Center (ORFRC) were amended with glycerol phosphate as model organophosphate source in small flow-through columns under aerobic conditions to determine whether natural phosphatase activity of indigenous soil bacteria was able to promote the precipitation of uranium(VI) at pH 5.5 and 7.0. High concentrations of phosphate (1-3 mM) were detected in the effluent of these columns at both pH compared to control columns amended with U(VI) only, suggesting that phosphatase-liberating microorganisms were readily stimulated by the organophosphate substrate. Net phosphate production rates were higher in the low pH soil (0.73 ± 0.17 mM d -1 ) compared to the circumneutral pH soil (0.43 ± 0.31 mM d -1 ), suggesting that non-specific acid phosphatase activity was expressed constitutively in these soils. A sequential solid-phase extraction scheme and X-ray absorption spectroscopy measurements were combined to demonstrate that U(VI) was primarily precipitated as uranyl phosphate minerals at low pH, whereas it was mainly adsorbed to iron oxides and partially precipitated as uranyl phosphate at circumneutral pH. These findings suggest that, in the presence of organophosphates, microbial phosphatase activity can contribute to uranium immobilization in both low and circumneutral pH soils through the formation of stable uranyl phosphate minerals.
    Geochimica et Cosmochimica Acta 01/2011; 75:5648-5663. · 3.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent voltammetric analyses indicate that Shewanella putrefaciens strain 200 produces soluble organic-Fe(III) complexes during anaerobic respiration of sparingly soluble Fe(III) oxides. Results of the present study expand the range of Shewanella species capable of producing soluble organic-Fe(III) complexes to include Shewanella oneidensis MR-1. Soluble organic-Fe(III) was produced by S. oneidensis cultures incubated anaerobically with Fe(III) oxides, or with Fe(III) oxides and the alternate electron acceptor fumarate, but not in the presence of O(2), nitrate or trimethylamine-N-oxide. Chemical mutagenesis procedures were combined with a novel MicroElectrode Screening Array (MESA) to identify four (designated Sol) mutants with impaired ability to produce soluble organic-Fe(III) during anaerobic respiration of Fe(III) oxides. Two of the Sol mutants were deficient in anaerobic growth on both soluble Fe(III)-citrate and Fe(III) oxide, yet retained the ability to grow on a suite of seven alternate electron acceptors. The rates of soluble organic-Fe(III) production were proportional to the rates of iron reduction by the S. oneidensis wild-type and Sol mutant strains, and all four Sol mutants retained wild-type siderophore production capability. Results of this study indicate that the production of soluble organic-Fe(III) may be an important intermediate step in the anaerobic respiration of both soluble and sparingly soluble forms of Fe(III) by S. oneidensis.
    Environmental Microbiology 04/2010; 12(4):938-50. · 6.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Shewanella oneidensis MR-1 respires a wide range of anaerobic electron acceptors, including sparingly soluble Fe(III) oxides. In the present study, S. oneidensis was found to produce Fe(III)-solubilizing organic ligands during anaerobic Fe(III) oxide respiration, a respiratory strategy postulated to destabilize Fe(III) and produce more readily reducible soluble organic Fe(III). In-frame gene deletion mutagenesis, siderophore detection assays, and voltammetric techniques were combined to determine (i) if the Fe(III)-solubilizing organic ligands produced by S. oneidensis during anaerobic Fe(III) oxide respiration were synthesized via siderophore biosynthesis systems and (ii) if the Fe(III)-siderophore reductase was required for respiration of soluble organic Fe(III) as an anaerobic electron acceptor. Genes predicted to encode the siderophore (hydroxamate) biosynthesis system (SO3030 to SO3032), the Fe(III)-hydroxamate receptor (SO3033), and the Fe(III)-hydroxamate reductase (SO3034) were identified in the S. oneidensis genome, and corresponding in-frame gene deletion mutants were constructed. DeltaSO3031 was unable to synthesize siderophores or produce soluble organic Fe(III) during aerobic respiration yet retained the ability to solubilize and respire Fe(III) at wild-type rates during anaerobic Fe(III) oxide respiration. DeltaSO3034 retained the ability to synthesize siderophores during aerobic respiration and to solubilize and respire Fe(III) at wild-type rates during anaerobic Fe(III) oxide respiration. These findings indicate that the Fe(III)-solubilizing organic ligands produced by S. oneidensis during anaerobic Fe(III) oxide respiration are not synthesized via the hydroxamate biosynthesis system and that the Fe(III)-hydroxamate reductase is not essential for respiration of Fe(III)-citrate or Fe(III)-nitrilotriacetic acid (NTA) as an anaerobic electron acceptor.
    Applied and Environmental Microbiology 02/2010; 76(8):2425-32. · 3.95 Impact Factor
  • Geomicrobiology 09/2009; · 1.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In situ capping is a management technique for contaminated sediments involving the placement of clean material at the sediment-water interface. This work combined porewater geochemical profiling with quantitative microbial data to investigate the intrinsic microbial colonization of a sand cap. Geochemical characterization using voltammetric microelectrodes indicated vertical stratification of biogeochemical processes within a capped sediment column. Following dissection of the column, quantitative real-time PCR (qPCR) enumerated microbial populations within each discrete redoxzone and was accompanied by terminal-restriction fragment length polymorphism (T-RFLP) to elucidate general community shifts. Bacteria and Archaea were present within the cap according to qPCR, with higher concentrations generally observed in the underlying sediment. Iron-reducing populations were detected and quantified using newly designed qPCR primer pairs for Anaeromyxobacter spp. and Shewanella spp. and published primer sets for delta-Proteobacteria and Geobacteracea. Results confirmed geochemical measurements indicating that microbial Fe(III) reduction was a major process in the overlying cap. Genes encoding microbial sulfate reduction (dsrA) and methanogenesis (mcrA) were also present within the cap but were more prevalent in the sediment. Canonical correspondence analysis of terminal-restriction fragment length polymorphism (T-RFLP) patterns verified that spatial changes in bacterial community composition were significantly correlated to depth and Fe2+ and Mn2+ concentration gradients. Cumulatively, results demonstrate that microorganisms indigenous to aquatic sediments colonized the overlying cap to form complex communities mirroring redox stratification. Implications of capping for biogeochemical cycling, contaminant fate and transport, and remedial design are discussed.
    Environmental Science and Technology 02/2009; 43(1):66-74. · 5.48 Impact Factor
  • Stephanie S. Chow, Martial Taillefert
    [Show abstract] [Hide abstract]
    ABSTRACT: Depth profiles in the sediment porewaters of the Chattahoochee River (Georgia, USA) show that iron oxides scavenge arsenate in the water column and settle to the sediment–water interface (SWI) where they are reduced by iron-reducing bacteria. During their reduction, these particles seem to release arsenic to the porewaters in the form of arsenate only. Sediment slurry incubations were conducted to determine the effect of low concentrations of arsenic (⩽10 μM) on biogeochemical processes in these sediments. Experiments confirm that any arsenate (As(V)) added to these sediments is immediately adsorbed in oxic conditions and released in anoxic conditions during the microbial reduction of authigenic iron oxides. Incubations in the presence of ⩽1 μM As(V) reveal that arsenate is released but not concomitantly reduced during this process. Simultaneously, microbial iron reduction is enhanced significantly, spurring the simultaneous release of arsenate into porewaters and secondary formation of crystalline iron oxides. Above 1 μM As(V), however, the microbial reductive dissolution of iron oxides appears inhibited by arsenate, and arsenite is produced in excess in the porewaters. These incubations show that even low inputs of arsenic to riverine sediments may affect microbial processes, the stability of iron oxides and, indirectly, the cycling of arsenic. Possible mechanisms for such effects on iron reduction are proposed.
    Geochimica et Cosmochimica Acta 01/2009; · 3.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The remediation of uranium from soils and groundwater at Department of Energy (DOE) sites across the United States represents a major environmental issue, and bioremediation has exhibited great potential as a strategy to immobilize U in the subsurface. The bioreduction of U(VI) to insoluble U(IV) uraninite has been proposed to be an effective bioremediation process in anaerobic conditions. However, high concentrations of nitrate and low pH found in some contaminated areas have been shown to limit the efficiency of microbial reduction of uranium. In the present study, nonreductive uranium biomineralization promoted by microbial phosphatase activity was investigated in anaerobic conditions in the presence of high nitrate and low pH as an alternative approach to the bioreduction of U(VI). A facultative anaerobe, Rahnella sp. Y9602, isolated from soils at DOE's Oak Ridge Field Research Center (ORFRC), was able to respire anaerobically on nitrate as a terminal electron acceptor in the presence of glycerol-3-phosphate (G3P) as the sole carbon and phosphorus source and hydrolyzed sufficient phosphate to precipitate 95% total uranium after 120 hours in synthetic groundwater at pH 5.5. Synchrotron X-ray diffraction and X-ray absorption spectroscopy identified the mineral formed as chernikovite, a U(VI) autunite-type mineral. The results of this study suggest that in contaminated subsurfaces, such as at the ORFRC, where high concentrations of nitrate and low pH may limit uranium bioreduction, the biomineralization of U(VI) phosphate minerals may be a more attractive approach for in situ remediation providing that a source of organophosphate is supplied for bioremediation.
    Geomicrobiology 01/2009; 26(7):431-441. · 1.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In situ capping has recently emerged as a remedial method for contaminated sediments and involves placing a layer of clean material at the sediment-water interface. The biogeochemical response of native sediment following capping, as well as the redoxenvironmentsthatdevelopwithinthe cap, are currently unknown. Column experiments were performed using voltammetric microelectrodes to characterize spatial and temporal distributions of biogeochemical processes in capped sediments under stagnant and upflow conditions. Oxygen penetration into sand caps extended only a few centimeters, thus maintaining underlying sediment anaerobic. Chemical species indicative of heterotrophic organic matter degradation (Mn2+, Fe2+, organic--FeIII(aq), FexSy(aq), sigmaH2S) were observed in stratified zones below the oxic layer. The majority of the overlying cap was subject to iron-reducing conditions under stagnant flow, while upflow conditions led to a compression of the redox zones toward the cap-water interface. Controls confirmed that sediment capping induced an upward, vertical shift of biogeochemical processes into the overlying cap, with redox stratification conserved. The redox conditions within the cap, specifically the predominance of iron reduction, should allow for reductive contaminant attenuation processes to extend into the overlying cap. These findings improve our understanding of the dynamics of biogeochemical processes following capping of contaminated sediments.
    Environmental Science and Technology 07/2008; 42(11):4113-20. · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, the immobilization of toxic uranium [U(VI)] mediated by the intrinsic phosphatase activities of naturally occurring bacteria isolated from contaminated subsurface soils was examined. The phosphatase phenotypes of strains belonging to the genera, Arthrobacter, Bacillus and Rahnella, previously isolated from subsurface soils at the US Department of Energy's (DOE) Oak Ridge Field Research Center (ORFRC), were determined. The ORFRC represents a unique, extreme environment consisting of highly acidic soils with co-occurring heavy metals, radionuclides and high nitrate concentrations. Isolates exhibiting phosphatase-positive phenotypes indicative of constitutive phosphatase activity were subsequently tested in U(VI) bioprecipitation assays. When aerobically grown in synthetic groundwater (pH 5.5) amended with 10 mM glycerol-3-phosphate (G3P), phosphatase-positive Bacillus and Rahnella spp. strains Y9-2 and Y9602 liberated sufficient phosphate to precipitate 73% and 95% of total soluble U added as 200 microM uranyl acetate respectively. In contrast, an Arthrobacter sp. X34 exhibiting a phosphatase-negative phenotype did not liberate phosphate from G3P or promote U(VI) precipitation. This study provides the first evidence of U(VI) precipitation via the phosphatase activity of naturally occurring Bacillus and Rahnella spp. isolated from the acidic subsurface at the DOE ORFRC.
    Environmental Microbiology 04/2008; 9(12):3122-33. · 6.24 Impact Factor
  • Mary-Lou Tercier-Waeber, Martial Taillefert
    [Show abstract] [Hide abstract]
    ABSTRACT: The contamination of aquatic ecosystems by natural and anthropogenic metals has lead to a need to better characterize their impact in the environment. To a large extent, the fate and the (eco)toxicity of these elements in aquatic systems are related to their chemical speciation, which may vary continuously in space and time. Detailed measurements of the fraction of specific metal species or groups of homologous metal species and their variation as a function of the bio-physicochemical conditions of the natural media are thus of prime importance. To determine these metal fractions as well as redox chemical species regulating their distribution (dissolved oxygen, sulfides, iron and manganese oxides), new analytical tools capable of performing in situ, real-time monitoring in both water columns and sediments with minimum perturbation of the media are required. This paper reviews the challenges associated with metal speciation studies, and the progress made with state of the art voltammetric techniques to measure the speciation of metals in situ. More specifically, it summarizes the specific conceptual, analytical, and technical criteria that must be considered and/or fulfilled to develop rugged, field deployable, non-perturbing sensors and probes. Strategies used to satisfy these criteria are presented by describing the up-to-date most advanced voltammetric sensors, mini-/micro-integrated analytical systems, and submersible equipments developed for in situ measurements of trace metals and main redox species in aquatic systems. The spatial and temporal resolutions achieved by these news tools represent a significant advantage over traditional laboratory techniques, while simultaneously remaining cost effective. The application of these tools to aquatic systems is illustrated by several examples of unattended and remote in situ monitoring and/or profiling in water columns and sediments.
    Journal of Environmental Monitoring 02/2008; 10(1):30-54. · 2.09 Impact Factor
  • Gwendolyn Bristow, Martial Taillefert
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent progress has resulted in the development of advanced techniques to acquire geochemical information in situ in aquatic systems. Among these techniques, voltammetry has generated significant interest for its ability to detect several important redox-sensitive chemical species in a fast, reliable, and automated manner. Many research groups worldwide have now adopted these techniques for geochemical measurements in various marine and freshwater systems, including water column, sediment, microbial mat, and groundwater, with a high spatial and temporal resolution. Unfortunately, the ability to conduct multiple measurements with great spatial and temporal resolutions generates large data sets that are difficult to integrate manually. We report a new computer program, voltammetric integration software (VOLTINT), that can integrate large voltammetric data sets semi-automatically. This program implemented in Matlab® is based on a graphical user interface to visualize and identify voltammetric signals. The program differentiates between voltammetric techniques and derives or integrates voltammetric signals to produce output data files containing the redox potentials, current intensities, and, when appropriate, peak surface areas of each electrochemical species that can be detected. VOLTINT was developed with the intention of integrating voltammetric data obtained with potentiostats from a specific company Analytical Instrument Systems, Inc. (AIS). However, the scripts can be easily altered to process any ASCII file containing voltammetric data. The details of the program are presented, and examples provided along with recommendations regarding the analysis of voltammetric data in the context of this program. VOLTINT is available free of charge to anyone who is interested in integrating multiple voltammetric data files in a fast and reliable manner.
    Computers & Geosciences 01/2008; · 1.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Solid-state voltammetric (micro)electrodes have been used in a variety of environments to study biogeochemical processes. Here we show the wealth of information that has been obtained in the study of sediments, microbial mats, cultures and the water column including hydrothermal vents. Voltammetric analyzers have been developed to function with operator guidance and in unattended mode for temporal studies with an in situ electrochemical analyzer (ISEA). The electrodes can detect the presence (or absence) of a host of redox species and trace metals simultaneously. The multi-species capacity of the voltammetric electrode can be used to examine complex heterogeneous environments such as the root zone of salt marsh sediments. The data obtained with these systems clearly show that O2 and Mn2+ profiles in marine sedimentary porewaters and in microbial biofilms on metal surfaces rarely overlap indicating that O2 is not a direct oxidant for Mn2+. This lack of overlap was suggested originally by Joris Gieskes' group. In waters emanating from hydrothermal vents, Fe2+, H2S and soluble molecular FeS clusters (FeSaq) are detected indicating that the reactants for the pyrite formation reaction are H2S and soluble molecular FeS clusters. Using the ISEA with electrodes at fixed positions, data collected continuously over three days near a Riftia pachyptila tubeworm field generally show that O2 and H2S anti-correlate and that H2S and temperature generally correlate. Unlike sedimentary environments, the data clearly show that Riftia live in areas where both O2 and H2S co-exist so that its endosymbiont bacteria can perform chemosynthesis. However, physical mixing of diffuse flow vent waters with oceanic bottom waters above or to the side of the tubeworm field can dampen these correlations or even reverse them. Voltammetry is a powerful technique because it provides chemical speciation data (e.g.; oxidation state and different elemental compounds/ions) as well as quantitative data. Because (micro)organisms occupy environmental niches due to the system's chemistry, it is necessary to know chemical speciation. Voltammetric methods allow us to study how chemistry drives biology and how biology can affect chemistry for its own benefit.
    Marine Chemistry 01/2008; 108:221-235. · 3.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mechanism of Fe(III) reduction was investigated using voltammetric techniques in anaerobic incubations of Shewanella putrefaciens strain 200 supplemented with Fe(III) citrate or a suite of Fe(III) oxides as terminal electron acceptor. Results indicate that organic complexes of Fe(III) are produced during the reduction of Fe(III) at rates that correlate with the reactivity of the Fe(III) phase and bacterial cell density. Anaerobic Fe(III) solubilization activity is detected with either Fe(III) oxides or Fe(III) citrate, suggesting that the organic ligand produced is strong enough to destabilize Fe(III) from soluble or solid Fe(III) substrates. Results also demonstrate that Fe(III) oxide dissolution is not controlled by the intrinsic chemical reactivity of the Fe(III) oxides. Instead, the chemical reaction between the endogenous organic ligand is only affected by the number of reactive surface sites available to S. putrefaciens. This report describes the first application of voltammetric techniques to demonstrate production of soluble organic-Fe(III) complexes by any Fe(III)-reducing microorganism and is the first report of a Fe(III)-solubilizing ligand generated by a metal-reducing member of the genus Shewanella.
    Journal of Inorganic Biochemistry 12/2007; 101(11-12):1760-7. · 3.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Uranium contamination is an environmental concern at the Department of Energy's Field Research Center in Oak Ridge, Tennessee. In this study, we investigated whether phosphate biomineralization, or the aerobic precipitation of U(VI)-phosphate phases facilitated by the enzymatic activities of microorganisms, offers an alternative to the more extensively studied anaerobic U(VI) bioreduction. Three heterotrophic bacteria isolated from FRC soils were studied for their ability to grow and liberate phosphate in the presence of U(VI) and an organophosphate between pH 4.5 and 7.0. The objectives were to determine whether the strains hydrolyzed sufficient phosphate to precipitate uranium, to determine whether low pH might have an effect on U(VI) precipitation, and to identify the uranium solid phase formed during biomineralization. Two bacterial strains hydrolyzed sufficient organophosphate to precipitate 7395% total uranium after 120 h of incubation in simulated groundwater. The highest rates of uranium precipitation and phosphatase activity were observed between pH 5.0 and 7.0. EXAFS spectra identified the uranyl phosphate precipitate as an autunite/meta-autunite group mineral. The results of this study indicate that aerobic heterotrophic bacteria within a uranium-contaminated environment that can hydrolyze organophosphate, especially in low pH conditions, may play an important role in the bioremediation of uranium.
    Environmental Science and Technology 09/2007; 41(16):5701-7. · 5.48 Impact Factor

Publication Stats

1k Citations
175.37 Total Impact Points

Institutions

  • 2001–2014
    • Georgia Institute of Technology
      • School of Earth and Atmospheric Sciences
      Atlanta, Georgia, United States
  • 2008
    • University of Geneva
      • Department of Inorganic, Analytical, and Applied Chemistry
      Genève, GE, Switzerland
  • 2002
    • Merrimack College
      North Andover, Massachusetts, United States
    • Northwestern University
      Evanston, Illinois, United States
  • 2000–2002
    • University of Delaware
      Delaware, United States