Virginie Bailleux

Université Paris-Sud 11, Paris, Ile-de-France, France

Are you Virginie Bailleux?

Claim your profile

Publications (7)23.4 Total impact

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Growing evidences suggest that obesity is associated with hypothalamic leptin resistance, leading to the alteration of food intake control. Alternative treatment using ciliary neurotrophic factor (CNTF) has been suggested because CNTF exerts a leptin-like effect, even in leptin-resistant states, but the mechanisms by which CNTF maintains this effect are not yet understood. Both leptin and CNTF act in the hypothalamus through similar signaling pathways including janus kinase-2/signal transducer and activator of transcription (STAT)-3 pathway. To explore the differences and interactions between leptin and CNTF signaling pathways, differentiated human neuroblastoma cells (SH-SY5Y) were exposed to either leptin or CNTF and then challenged for each cytokine. Leptin pretreatment completely abolished leptin-dependent STAT-3 and ERK 1/2 phosphorylations without affecting CNTF action. The lack of cross-desensitization between leptin and CNTF signaling pathways occurred despite the induction of suppressor of cytokine signaling-3 in response to both cytokines. Interestingly, leptin as well as insulin induced the expression of phosphotyrosine phosphatase (PTP)-1B, whereas CNTF treatment did not affect its expression. In addition, acute leptin treatment but not CNTF induced PTP-1B expression in mouse hypothalamic arcuate nucleus. Furthermore, the overexpression of human PTP-1B in SH-SY5Y cells completely abolished leptin- and insulin-dependent janus kinase-2, STAT-3, and ERK 1/2 phosphorylations, but CNTF action was not altered. Collectively, our results suggest that PTP-1B constitutes a key divergent element between leptin/insulin and CNTF signaling pathways at the neuronal level, which may constitute a possible mechanism that explains the efficacy of CNTF in leptin-resistant states.
    Endocrinology 12/2008; 150(3):1182-91. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Administration of CNTF durably reduces food intake and body weight in obese humans and rodent models. However, the involvement of endogenous CNTF in the central regulation of energy homeostasis needs to be elucidated. Here, we demonstrate that CNTF and its receptor are expressed in the arcuate nucleus, a key hypothalamic region controlling food intake, and that CNTF levels are inversely correlated to body weight in rats fed a high-sucrose diet. Thus endogenous CNTF may act, in some individuals, as a protective factor against weight gain during hypercaloric diet and could account for individual differences in the susceptibility to obesity.
    FEBS Letters 11/2008; 582(27):3832-8. · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adiponectin is involved in the control of energy homeostasis in peripheral tissues through Adipor1 and Adipor2 receptors. An increasing amount of evidence suggests that this adipocyte-secreted hormone may also act at the hypothalamic level to control energy homeostasis. In the present study, we observed the gene and protein expressions of Adipor1 and Adipor2 in rat hypothalamus using different approaches. By immunohistochemistry, Adipor1 expression was ubiquitous in the rat brain. By contrast, Adipor2 expression was more limited to specific brain areas such as hypothalamus, cortex, and hippocampus. In arcuate and paraventricular hypothalamic nuclei, Adipor1, and Adipor2 were expressed by neurons and astrocytes. Furthermore, using transgenic green fluorescent protein mice, we showed that Adipor1 and Adipor2 were present in pro-opiomelanocortin (POMC) and neuropeptide Y (NPY) neurons in the arcuate nucleus. Finally, adiponectin treatment by intracerebroventricular injection induced AMP-activated protein kinase (AMPK) phosphorylation in the rat hypothalamus. This was confirmed by in vitro studies using hypothalamic membrane fractions. In conclusion, Adipor1 and Adipor2 are both expressed by neurons (including POMC and NPY neurons) and astrocytes in the rat hypothalamic nuclei. Adiponectin is able to increase AMPK phosphorylation in the rat hypothalamus. These data reinforced a potential role of adiponectin and its hypothalamic receptors in the control of energy homeostasis.
    Journal of Endocrinology 11/2008; 200(1):93-105. · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hyperprolactinemia and hyperleptinemia occur during gestation and lactation with marked hyperphagia associated with leptin resistance. Prolactin (PRL) induces the expression of orexigenic neuropeptide Y (NPY) through the activation of JAK-2/STAT-3 signaling pathway in hypothalamic paraventricular nucleus (PVN) leading to hyperphagia. PRL may also act through the inhibition of anorexigenic effect of leptin via induction of suppressor of cytokine signaling 3 (SOCS-3). This paper aimed to co-localize PRL (PRL-R) and leptin (ObRb) receptors in the hypothalamus of female rats and investigate the possible cross-desensitization between PRL-R and ObRb. We showed that: 1) PRL-R and ObRb are expressed in the PVN and co-localized in the same neurons; 2) in lactating females leptin failed to activate JAK-2/STAT-3 signaling pathway; 3) in Chinese Hamster Ovary (CHO) stably co-expressing PRL-R and ObRb, overexposure to PRL did not affect leptin signaling but totally abolished PRL-dependent STAT-5 phosphorylation. The overexposure to leptin produces similar results with strong alteration of leptin-dependent STAT-3 phosphorylation, whereas PRL-dependent STAT-5 was not affected; and 4) CHO-ObRb/PRL-R cells overexposure to leptin or PRL induces the expression of negative regulators SOCS-3 and PTP-1B. Thus, we conclude that these negative regulators affect specifically the inducer signaling pathway; for instance, SOCS-3 induced by PRL will affect PRL-R signaling but not ObRb signaling and vice versa. Finally, the lack of cross-desensitization between PURL-R and ObRb suggests that hyperphagia observed during gestation and lactation may be attributed to a direct effect of PRL on NPYexpression, and is most likely exacerbated by the physiological leptin resistance state.
    Journal of Endocrinology 12/2007; 195(2):341-50. · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological and animal studies suggest that the alteration of hormonal and metabolic environment during fetal and neonatal development can contribute to development of metabolic syndrome in adulthood. In this paper, we investigated the impact of maternal high-fat (HF) diet on hypothalamic leptin sensitivity and body weight gain of offspring. Adult Wistar female rats received a HF or a control normal-fat (C) diet for 6 wk before gestation until the end of the suckling period. After weaning, pups received either C or HF diet during 6 wk. Body weight gain and metabolic and endocrine parameters were measured in the eight groups of rats formed according to a postweaning diet, maternal diet, and gender. To evaluate hypothalamic leptin sensitivity in each group, STAT-3 phosphorylation was measured in response to leptin or saline intraperitoneal bolus. Pups exhibited similar body weights at birth, but at weaning, those born to HF dams weighed significantly less (-12%) than those born to C dams. When given the HF diet, males and females born to HF dams exhibited smaller body weight and feed efficiency than those born to C dams, suggesting increased energy expenditure programmed by the maternal HF diet. Thus, maternal HF feeding could be protective against adverse effects of the HF diet as observed in male offspring of control dams: overweight (+17%) with hyperleptinemia and hyperinsulinemia. Furthermore, offspring of HF dams fed either C or HF diet exhibited an alteration in hypothalamic leptin-dependent STAT-3 phosphorylation. We conclude that maternal high-fat diet programs a hypothalamic leptin resistance in offspring, which, however, fails to increase the body weight gain until adulthood.
    AJP Regulatory Integrative and Comparative Physiology 10/2007; 293(3):R1056-62. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The insulin-sensitive glucose transporter Glut4 is expressed in brain areas that regulate energy homeostasis and body adiposity. In contrast with peripheral tissues, however, the impact of insulin on Glut4 plasma membrane (PM) translocation in neurons is not known. In this study, we examined the role of two anorexic hormones (leptin and insulin) on Glut4 translocation in a human neuronal cell line that express endogenous insulin and leptin receptors. We show that insulin and leptin both induce Glut4 translocation to the PM of neuronal cells and activate glucose uptake. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, totally abolished insulin- and leptin-dependent Glut4 translocation and stimulation of glucose uptake. Thus, Glut4 translocation is a phosphatidylinositol 3-kinase-dependent mechanism in neuronal cells. Next, we investigated the impact of chronic insulin and leptin treatments on Glut4 expression and translocation. Chronic exposure of neuronal cells to insulin or leptin down-regulates Glut4 proteins and mRNA levels and abolishes the acute stimulation of glucose uptake in response to acute insulin or leptin. In addition, chronic treatment with either insulin or leptin impaired Glut4 translocation. A cross-desensitization between insulin and leptin was apparent, where exposure to insulin affects leptin-dependent Glut4 translocation and vice versa. This cross-desensitization could be attributed to the increase in suppressor of cytokine signaling-3 expression, which was demonstrated in response to each hormone. These results provide evidence to suggest that Glut4 translocation to neuronal PM is regulated by both insulin and leptin signaling pathways. These pathways might contribute to an in vivo glucoregulatory reflex involving a neuronal network and to the anorectic effect of insulin and leptin.
    Endocrinology 06/2006; 147(5):2550-6. · 4.64 Impact Factor