Lúcia Maria Vieira de Almeida

Universidade Federal de Ciências da Saúde de Porto Alegre, Pôrto de São Francisco dos Casaes, Rio Grande do Sul, Brazil

Are you Lúcia Maria Vieira de Almeida?

Claim your profile

Publications (26)68.88 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have shown sex-specific oxidative changes in spinal cord of rats submitted to chronic stress, which may be due to gonadal hormones. Here, we assessed total radical-trapping potential (TRAP), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and lipid peroxidation (evaluated by the TBARS test) in the spinal cord of ovariectomized (OVX) female rats. Female rats were subjected to OVX, and half of the animals received estradiol replacement. Animals were subdivided into controls and chronically stressed (for 40 days). Our findings demonstrate that chronic stress decreased TRAP, and increased SOD activity in spinal cord homogenates from ovariectomized female rats and had no effect on GPx activity. On the other hand, groups receiving 17β-estradiol replacement presented a decreased GPx activity, but no alteration in TRAP and in SOD activity. No differences in the TBARS test were found in any of the groups analyzed. In conclusion, our results support the idea that chronic stress induces an imbalance between SOD and GPx activities, additionally decreasing TRAP. Estradiol replacement did not reverse the effects of chronic stress, but induced a decrease in GPx activity. Therefore, estradiol replacement in ovariectomized chronically stressed rats could make the spinal cord more susceptible to oxidative injury.
    Neurochemical Research 11/2010; 35(11):1700-7. · 2.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hippocampal slices have been widely used to investigate electrophysiological and metabolic neuronal parameters, as well as parameters of astroglial activity including protein phosphorylation and glutamate uptake. S100B is an astroglial-derived protein, which extracellularly plays a neurotrophic activity during development and excitotoxic insult. Herein, we characterized S100B secretion in acute hippocampal slices exposed to different concentrations of K(+) and Ca(2+) in the extracellular medium. Absence of Ca(2+) and/or low K(+) (0.2 mM KCl) caused an increase in S100B secretion, possibly by mobilization of internal stores of Ca(2+). In contrast, high K(+) (30 mM KCl) or calcium channel blockers caused a decrease in S100B secretion. This study suggests that exposure of acute hippocampal slices to low- and high-K(+) could be used as an assay to evaluate astrocyte activity by S100B secretion: positively regulated by low K(+) (possibly involving mobilization of internal stores of Ca(2+)) and negatively regulated by high-K(+) (likely secondary to influx of K(+)).
    Neurochemical Research 04/2009; 34(9):1603-11. · 2.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The permanent occlusion of common carotid arteries (2VO) causes a significant reduction of cerebral blood flow (hypoperfusion) in rats and constitutes a well established experimental model to investigate neuronal damage and cognitive impairment that occurs in human ageing and Alzheimer's disease. In the present study, we evaluated two astroglial proteins--S100B and glial fibrillary acidic protein (GFAP)--in cerebral cortex and hippocampus tissue, glutamate uptake and glutamine synthetase activity in hippocampus tissue, as well as S100B in cerebrospinal fluid. Cognition, as assessed by reference and working spatial memory protocols, was also investigated. Adult male Wistar rats were submitted to 10 weeks of chronic cerebral hypoperfusion by the 2VO method. A significant increase of S100B and GFAP in hippocampus tissue was observed, as well a significant decrease in glutamate uptake. Interestingly, we observed a decrease in S100B in cerebrospinal fluid. As for the cognitive outcome, there was an impairment of both reference and working spatial memory in the water maze; positive correlation between cognitive impairment and glutamate uptake decrease was evidenced in hypoperfused rats. These data support the hypothesis that astrocytes play a crucial role in the mechanisms of experimental neurodegeneration and that hippocampal pathology arising after chronic hypoperfusion gives rise to memory deficits.
    Brain research 12/2008; 1251:204-12. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is a current interest in dietary compounds (such as trans-resveratrol) that can inhibit or reverse oxidative stress, the common pathway for a variety of brain disorders, including Alzheimer's disease and stroke. The objective of the present study was to investigate the effects of resveratrol, under conditions of oxidative stress induced by H(2)O(2), on acute hippocampal slices from Wistar rats. Here, we evaluated cell viability, extracellular lactate, glutathione content, ERK(MAPK) activity, glutamate uptake and S100B secretion. Resveratrol did not change the decrease in lactate levels and in cell viability (by MTT assay) induced by 1mM H(2)O(2), but prevented the increase in cell permeability to Trypan blue induced by H(2)O(2). Moreover, resveratrol per se increased total glutathione levels and prevented the decrease in glutathione induced by 1mM H(2)O(2). The reduction of S100B secretion induced by H(2)O(2) was not changed by resveratrol. Glutamate uptake was decreased in the presence of 1mM H(2)O(2) and this effect was not prevented by resveratrol. There was also a significant activation of ERK1/2 by 1mM H(2)O(2) and resveratrol was able to completely prevent this activation, leading to activity values lower than control levels. The impairments in astrocyte activities, induced by H(2)O(2), confirmed the importance of these cells as targets for therapeutic strategy in brain disorders involving oxidative stress. This study reinforces the protective role of resveratrol and indicates some possible molecular sites of activity of this compound on glial cells, in the acute damage of brain tissue during oxidative stress.
    Archives of Biochemistry and Biophysics 10/2008; 480(1):27-32. · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lesion of the nucleus basalis magnocellularis (nbm) is a suitable approach to study cognitive deficit and behavior alterations involving cholinergic dysfunction, which is associated with the major types of dementia. Cortical astrogliosis also has been described in this model, but it is not clear whether hippocampal astrocytes are activated. In this study, we investigated possible specific astrocyte alterations in the hippocampi of Wistar rats submitted to nbm damage with ibotenic acid, investigating the content and immunohistochemistry of glial fibrillary acidic protein (GFAP), as well as S100B protein content, glutamate uptake and glutamine synthetase activity on the 7th and 28th post-lesion days. Cognitive deficit was confirmed by the step-down inhibitory avoidance task. Interestingly, we found a decrease in GFAP content, S100B content and glutamate uptake activity in the hippocampus on the 28th day after nbm lesion. No alterations were observed in glutamine synthetase activity or in the cerebrospinal fluid S100B content. Although our data suggest caution in the use of nbm lesion with ibotenic acid as a dementia model, it is possible that these alterations could contribute to the cognitive deficit observed in these rats.
    Behavioural Brain Research 08/2008; 190(2):206-11. · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: S100B expression, particularly extracellular S100B, is used as a parameter of glial activation and/or death in several situations of brain injury. Several immunoassays for S100B measurement are available, which differ with regard to specificity, sensitivity, sample application, and, of course, economic costs. We standardized two protocols for S100B measurement (range between 1.9pg and 10ng/mL) in human and rat samples from brain and adipose tissues, blood serum, cerebrospinal fluid, urine and cell culture. Abundance and secretion of this protein in adipose tissue reinforces the caution about its origin in blood serum. Interestingly, S100B recognition was affected by the redox status of the protein. This aspect should be considered in S100B measurement, assuming that oxidized and reduced forms possibly coexist in vivo and the equilibrium can be modified by oxidative stress of physiological or pathological conditions or even by obtaining sample conditions.
    Journal of Neuroscience Methods 04/2008; 169(1):93-9. · 2.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is well established that the brain is particularly susceptible to oxidative damage due to its high consumption of oxygen and that astrocytes are involved in a variety of important activities for the nervous system, including a protective role against damage induced by reactive oxygen species (ROS). The use of antioxidant compounds, such as polyphenol resveratrol found in red wine, to improve endogenous antioxidant defenses has been proposed for neural protection. The aim of this study is to evaluate the putative protective effect of resveratrol against acute H2O2-induced oxidative stress in astrocyte cultures, evaluating ROS production, glutamate uptake activity, glutathione content and S100B secretion. Our results confirm the ability of resveratrol to counteract oxidative damage caused by H2O2, not only by its antioxidant properties, but also through the modulation of important glial functions, particularly improving glutamate uptake activity, increasing glutathione content and stimulating S100B secretion, which all contribute to the functional recovery after brain injury.
    Neurochemical Research 02/2008; 33(1):8-15. · 2.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bipolar disorder (BD) is a chronic, severe, and highly disabling psychiatric disorder; peripheral markers have been used to assess biochemical alterations associated with BD and/or possibly involved in its pathophysiology. Beyond neuronal commitment, many groups have proposed the involvement of glial activity in psychiatric disorders. Other biochemical markers, particularly associated with oxidative stress, have been studied in BD. In the present study, we evaluated glial involvement and oxidative stress in patients with BD. Glial activity was assessed by measuring serum S100B content; oxidative stress was assessed using serum thiobarbituric acid reactive substances (TBARS) and activities of antioxidant enzymes in BD patients during different episodes of disease. We found a significant increment of serum S100B during episodes of mania and depression, but not in euthymic patients. Superoxide dismutase (SOD) activity, as well the SOD/glutathione peroxidase plus catalase ratio, was also increased in manic and depressed patients. On the other hand, TBARS levels were increased in BD patients regardless of the phase of the disorder. These findings suggest a potential oxidative damage in BD patients. This peripheral oxidative imbalance indicates that systemic changes are taking place during the active phases of the illness. Such changes appear to relate to astrocyte function, as indicated by serum S100B elevation.
    Journal of Psychiatric Research 10/2007; 41(6):523-9. · 4.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a polyphenol present in grapes and red wine, which has antioxidant properties and a wide range of other biological effects. In this study, we investigated the effect of resveratrol, in a concentration range of 10–250μM, on primary cortical astrocytes; evaluating cell morphology, parameters of glutamate metabolism such as glutamate uptake, glutamine synthetase activity and glutathione total content, and S100B secretion. Astrocyte cultures were prepared of cerebral cortex from neonate Wistar rats. Morphology was evaluated by phase-contrast microscopy and immunocytochemistry for glial fibrillary acidic protein (GFAP). Glutamate uptake was measured using l-[2,3-3H]glutamate. Glutamine synthetase and content of glutathione were measured by enzymatic colorimetric assays. S100B content was determined by ELISA. Typical polygonal morphology becomes stellated when astrocyte cultures were exposed to 250μM resveratrol for 24h. At concentration of 25μM, resveratrol was able to increase glutamate uptake and glutathione content. Conversely, at 250μM, resveratrol decreased glutamate uptake. Unexpectedly, resveratrol at this high concentration increased glutamine synthetase activity. Extracellular S100B increased from 50μM upwards. Our findings reinforce the protective role of this compound in some brain disorders, particularly those involving glutamate toxicity. However, the underlying mechanisms of these changes are not clear at the moment and it is necessary caution with its administration because elevated levels of this compound could contribute to aggravate these conditions.
    Cellular and Molecular Neurobiology 08/2007; 27(5):661-668. · 2.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: S100B is an astrocyte calcium-binding protein that plays a regulatory role in the cytoskeleton and cell cycle. Moreover, extracellular S100B, a marker of glial activation in several conditions of brain injury, has a trophic or apoptotic effect on neurons, depending on its concentration. Hyperglycemic rats show changes in glial parameters, including S100B expression. Here, we investigated cell density, morphological and biochemical alterations in primary cortical astrocytes from rats and C6 glioma cells cultured in high-glucose medium. Astrocytes and C6 glioma cells have a reduced content of S100B and glial fibrillary acidic protein when cultured in a high-glucose environment, as well as a reduced content of glutathione and cell proliferation rate. Although these cells have been used indistinctly to study S100B secretion, we observed a contrasting profile of S100B secretion in a high-glucose medium: a decrease in primary astrocytes and an increase in C6 glioma cells. Based on the in vitro neurotrophic effects of the S100B protein, our data suggest that chronic elevated glucose levels affect astrocyte activity, reducing extracellular secretion of S100B and that this, in turn, could affect neuronal activity and survival. Such astrocyte alterations could contribute to cognitive deficit and other impairments observed in diabetic patients.
    Neurochemistry International 05/2007; 50(5):774-82. · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The brain is particularly susceptible to oxidative insults and its antioxidant defense is dependent on its glutathione content. Protein malnutrition (PMN) is an important and very common insult during development and compromises antioxidant defenses in the body, particularly glutathione levels. We investigated whether brain glutathione content and related metabolic pathways, predominantly regulated by astrocytes (particularly glutamate uptake and glutamine synthesis), are altered by pre- and postnatal PMN in rats. Thus, we measured the glutathione content, glutamine synthetase (GS) activity, and glutamate uptake activity in the cerebral cortex (Cx) and hippocampus of rats subjected to pre- and postnatal PMN and in nourished controls. Although malnourished rats exhibited an ontogenetic profile of glutathione levels in both brain regions similar to that of controls, they had lower levels on postnatal d 2 (P2); in Cx this decrease persisted until postnatal d 15. In addition, we found other changes, such as reduced total antioxidant reactivity and glutathione peroxidase activity on P2, and these were not accompanied by alterations in free radical levels or lipoperoxidation in either brain region. Moreover, malnourished rats had elevated GS and reduced glutamate uptake. Taken together, these alterations indicate specific changes in astrocyte metabolism, possibly responsible for the higher vulnerability to excitotoxic/oxidative damage in malnourished rats. The lower antioxidant defense appears to be the main alteration that causes oxidative imbalance, rather than an increase in reactive oxygen species. Moreover, a recovery of altered metabolic variables may occur during adulthood, despite persistent PMN.
    Journal of Nutrition 10/2006; 136(9):2357-61. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resveratrol, a phytoalexin found mainly in grapes, is a promising natural product with anti-cancer and cardio-protective activities. Here, we investigated, in C6 glioma cells, the effect of resveratrol on some specific parameters of astrocyte activity (glutamate uptake, glutamine synthetase and secretion of S100B, a neurotrophic cytokine) commonly associated with the protective role of these cells. Cell proliferation was significantly decreased by 8% and 26%, following 24h of treatment with 100 and 250 microM resveratrol. Extracellular S100B increased after 48 h of resveratrol exposure. Short-term resveratrol exposure (from 1 to 100 microM) induced a linear increase in glutamate uptake (up to 50% at 100 microM resveratrol) and in glutamine synthetase activity. Changes in these glial activities can contribute to the protective role of astrocytes in brain injury conditions, reinforcing the putative use of this compound in the therapeutic arsenal against neurodegenerative diseases and ischemic disorders.
    Archives of Biochemistry and Biophysics 10/2006; 453(2):161-7. · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hyperammonemia is a major element in the pathogenesis of hepatic encephalopathy (HE) and ammonia neurotoxicity involves an effect on the glutamatergic neurotransmitter system. Astrocytes are intimately related to glutamatergic neurotransmission and, in fact, many specific glial alterations have been reported as a result of ammonia exposure. S100B protein, particularly extracellular S100B, is used as a parameter of glial activation or commitment in several situations of brain injury. However, there is little information about this protein in ammonia toxicity and none about its secretion in astrocytes under ammonia exposure. In this study, we investigated S100B secretion in rat cortical astrocytes acutely exposed to ammonia, as well astrocyte morphology, glial fibrillary acidic protein (GFAP) content and glutamine synthetase (GS) activity. Moreover, we studied a possible effect of creatine on these glial parameters, since this compound has a putative role against ammonia toxicity in cell cultures. We found an increase in S100B secretion by astrocytes exposed to ammonia for 24h, accompanied by a decrease in GFAP content and GS activity. Since elevated and persistent extracellular S100B plays a toxic effect on neural cells, altered extracellular content of S100B induced by ammonia could contribute to the brain impairment observed in HE. Creatine addition did not prevent this increment in S100B secretion, but was able to prevent the decrease in GFAP content and GS activity induced by ammonia exposure.
    Brain Research Bulletin 07/2006; 70(2):179-85. · 2.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Severe neurological symptoms, cerebral edema, and atrophy are common features of the inherited metabolic disorder propionic acidemia. However, the pathomechanisms involved in the neuropathology of this disease are not well established. In this study, we investigate the effects of propionic acid (PA), a metabolite accumulating in this disorder, on cytoskeletal reorganization, on cell viability, and on the in vitro phosphorylation of glial fibrillary acidic protein (GFAP) and vimentin in cultured astrocytes from cerebral cortex of neonatal rats. We observed that the astrocytes changed their usual polygonal morphology when exposed to 5 mM PA for 72 h, leading to the appearance of fusiform or process-bearing cells, without elicit cell death. We also noticed that after 72 h treatment with 5 mM PA cells showed retracted cytoplasm with bipolar processes containing packed GFAP filaments and disorganized actin stress fibers, as revealed by immunocytochemistry. In addition, the morphological alterations were accompanied by increased in vitro 32P incorporation into GFAP and vimentin recovered into the high-salt Triton-insoluble cytoskeletal fraction. In conclusion, our results indicate that PA lead to cytoskeletal reorganization and to increased in vitro phosphorylation of Triton-insoluble GFAP and vimentin. On the basis of our results we could suppose that Triton-insoluble GFAP and vimentin hyperphosphorylation could be implicated in the reorganization of cellular structure and these findings could be involved in the brain damage characteristic of propionic acidemia patients.
    Metabolic Brain Disease 04/2006; 21(1):51-62. · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study evaluated the effects of protein malnutrition on oxidative status in rat brain areas. We investigated various parameters of oxidative status, free radical content (dichlorofluorescein formation), indexes of damage to lipid (thiobarbituric acid-reactive substances assay), and protein damage (tryptophan and tyrosine content) in addition to total antioxidant reactivity levels and antioxidant enzyme activities of superoxide dismutase, glutathione peroxidase, and catalase in different cerebral regions (cortex, hippocampus, and cerebellum) from rats subjected to prenatal and postnatal protein malnutrition (control 25% casein and protein malnutrition 7% casein). Protein malnutrition altered various parameters of oxidative stress, especially damage to macromolecules. Free radical content was unchanged by protein malnutrition. There was an increase in levels of thiobarbituric acid-reactive substances, the index of lipid peroxidation, in the cerebellum and cerebral cortex (P < 0.05) from protein-malnourished rats. Moreover, significant decreases in tryptophan and tyrosine in all tested brain structures (P < 0.05) were observed. Catalase activity was significantly decreased in the cerebellum (P < 0.05). In addition, a significant decrease in total antioxidant reactivity levels (P < 0.05) was observed in the cerebral cortex from protein-malnourished rats. The present data indicated that protein malnutrition increased oxidative damage to lipids and proteins from the studied brain areas. These results may be an indication of an important mechanism for changes in brain development that are caused by protein malnutrition.
    Nutrition 03/2006; 22(2):160-5. · 2.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphorylation of the glial fibrillary acidic protein (GFAP) in hippocampal and cerebellar slices from immature rats is stimulated by glutamate. This effect occurs via a group II metabotropic glutamate receptor in the hippocampus and an NMDA ionotropic receptor in the cerebellum. We investigated the glutamate modulation of GFAP phosphorylation in the olfactory bulb slices of Wistar rats of different ages (post-natal day 15 = P15, post-natal day 21 = P21 and post-natal day 60 = P60). Our results showed that glutamate stimulates GFAP phosphorylation in young animals and this is mediated by NMDA receptors. We also observed a decrease in glutamate uptake at P60 compared to P15, a finding similar to that found in the hippocampus. The activity of glutamine synthetase was elevated after birth, but was found to decrease with development from P21 to P60. Together, these data confirm the importance of glutamatergic transmission in the olfactory bulb, its developmental regulation in this brain structure and extends the concept of glial involvement in glutamatergic neuron-glial communication.
    Neurochemical Research 10/2005; 30(9):1101-8. · 2.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ketogenic diet (KD) is a high-fat, low-protein and low-carbohydrate diet included as medical practice against seizure disorders, particularly in children refractory to conventional anti-epileptic drug treatment. However, the molecular basis of its therapeutic effect remains unclear. Considering the growing evidence for the importance of glial cells for neuronal development, survival and plasticity, we investigated astrocyte protein markers from KD fed rats, in different regions of hippocampus, a brain structure commonly involved in seizure disorders. We found a transitory increment in GFAP in the CA3 hippocampal region, but not in the CA1 or dentate gyrus (DG). This change was not accompanied by changes in S100B content or glutamine synthetase activity. In order to evaluate possible hippocampal involvement we investigated spatial-cognitive behavior using the water-maze task. No changes were observed. This transitory gliosis in CA3 could be related to, or precede, other associated changes proposed to be involved in the attenuation of seizure disorders. These data reinforce the importance of hippocampal astrocytes as cell targets during KD feeding.
    Nutritional Neuroscience 09/2005; 8(4):259-64. · 1.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 1. Maple syrup urine disease (MSUD) is an inherited metabolic disorder predominantly characterized by neurological dysfunction and cerebral atrophy whose patophysiology is poorly known. 2. We investigated here whether the branched-chain amino acids (BCAA) leucine (Leu), isoleucine (Ile) and valine (Val), which are the biochemical hallmark of this disorder, could alter astrocyte morphology and cytoskeleton reorganization by exposing cultured astrocytes from cerebral cortex of neonatal rats to various concentrations of the amino acids. A change of cell morphology from the usual polygonal to the appearance of fusiform or process-bearing cells was caused by the BCAA. Cell death was also observed when astrocytes were incubated in the presence of BCAA for longer periods. 3. Val-treated astrocytes presented the most dramatic morphological alterations. Immunocytochemistry with anti-actin and anti-GFAP antibodies revealed that all BCAA induced reorganization of actin and GFAP cytoskeleton. In addition, lysophosphatidic acid, an activator of RhoA GTPase pathway, was able to totally prevent the morphological alterations and cytoskeletal reorganization induced by Val, indicating that the RhoA signaling pathway was involved in these effects. 4. Furthermore, creatine attenuated the morphological alterations provoked by the BCAA, the protection being more pronounced for Val, suggesting that impairment of energy homeostasis is partially involved in BCAA cytotoxic action. The data indicate that the BCAA accumulating in MSUD are toxic to astrocyte cells, a fact that may be related to the pathogenesis of the neurological dysfunction of MSUD patients.
    Cellular and Molecular Neurobiology 09/2005; 25(5):851-67. · 2.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Severe neurological symptoms, cerebral edema, and atrophy are common features of the inherited metabolic disorder maple syrup urine disease (MSUD). However, the pathomechanisms involved in the neuropathology of this disease are not well established. In this study, we investigated the effects of the branched-chain keto acids (BCKA) alpha-ketoisocaproic (KIC), alpha-ketoisovaleric (KIV), and alpha-keto-beta-methylvaleric (KMV), which accumulate in MSUD, on astrocyte morphology and cytoskeleton reorganization. Cultured astrocytes from cerebral cortex of neonatal rats were exposed to various concentrations of the BCKA and cell morphology was studied. We observed that these cells changed their usual polygonal morphology when exposed to BCKA, leading to the appearance of fusiform or process-bearing cells. Furthermore, longer exposures to the BCKA elicited cell death at all concentrations studied, attaining massive death at the highest concentrations. Immunocytochemistry with anti-actin or anti-GFAP antibodies revealed that the BCKA induced reorganization of actin and GFAP cytoskeleton. In addition, astrocytes treated with lysophosphatidic acid, an upstream activator of the RhoA GTPase pathway, totally prevented the morphological alterations and cytoskeletal reorganization induced by KIV, indicating that this effect could be mediated by the RhoA signaling pathway. Furthermore, the effects of BCKA on astrocyte morphology were prevented by creatine. In addition, creatine kinase activity was inhibited by KIC and KIV; this inhibition was prevented by creatine, indicating that these keto acids compromise brain energy metabolism. Considering that astroglial cells are critical to brain development and functioning, it is conceivable that alterations of the actin network by BCKA may have important implications in astrocytic function and possibly in the pathogenesis of the neurological dysfunction and brain damage of MSUD patients.
    Glia 12/2004; 48(3):230-40. · 5.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes have a variety of roles in maintaining neural tissue physiology, including energetic support, uptake and metabolism of glutamate and secretion of neurotrophic factors. Glutamate toxicity has been implicated in neurodegenerative disorders associated with conditions related to energy failure, and to elevation of glutamate extracellular levels in brain. Glucose is the main energetic substrate for brain cells but, in some circumstances, the ketone bodies are used as a supplementary source and have been suggested to be neuroprotective agents against seizure disorders. Here, we investigate some possible biochemical changes in astrocyte cultures induced by beta-hydroxy-butyrate, the predominant blood ketone body. Its effect upon S100B secretion, astrocyte morphology and glutamate uptake was particularly investigated. S100B, a calcium-binding protein expressed and secreted by astrocytes, has neurotrophic activity and a possible role in epileptogenesis. Cell morphology was investigated by phase-contrast microscopy and immunocytochemistry for actin, GFAP and S100B. Our data show that beta-hydroxy-butyrate induces dramatic changes in astrocyte morphology and, independent of this, causes changes in the extracellular content of S100B. We observed an increment in S100B 1 h after beta-hydroxy-butyrate addition and a decrease 24 h later. No changes were observed in glutamate uptake. These astrocytic modifications may be associated with reduced neuronal excitability observed in the ketogenic condition.
    Brain Research Bulletin 09/2004; 64(2):139-43. · 2.94 Impact Factor

Publication Stats

555 Citations
68.88 Total Impact Points


  • 2007–2009
    • Universidade Federal de Ciências da Saúde de Porto Alegre
      Pôrto de São Francisco dos Casaes, Rio Grande do Sul, Brazil
  • 2003–2009
    • Universidade Federal do Rio Grande do Sul
      • • Departamento de Bioquímica
      • • Instituto de Ciências Básicas da Saúde
      Porto Alegre, Estado do Rio Grande do Sul, Brazil