Brent R Gabel

Centre for Chronic Disease Control, New Dilli, NCT, India

Are you Brent R Gabel?

Claim your profile

Publications (2)9.59 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chlamydia infections cause substantial morbidity worldwide and effective prevention will depend on a vaccine. Since Chlamydia immunity is T cell-mediated, a major impediment to developing a molecular vaccine has been the difficulty in identifying relevant T cell Ags. In this study, we used a combination of affinity chromatography and tandem mass spectrometry to identify 13 Chlamydia peptides among 331 self-peptides presented by MHC class II (I-A(b)) molecules from bone marrow-derived murine dendritic cells infected with Chlamydia muridarum. These MHC class II-bound peptides were recognized by Chlamydia-specific CD4 T cells harvested from immune mice and adoptive transfer of dendritic cells pulsed ex vivo with the peptides partially protected mice against intranasal and genital tract Chlamydia infection. The results provide evidence for lead vaccine candidates for a T cell-based subunit molecular vaccine against Chlamydia infection suitable for human study.
    The Journal of Immunology 03/2008; 180(4):2459-65. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immune responses to Chlamydia trachomatis underlay both immunity and immunopathology. Immunopathology in turn has been attributed to chronic persistent infection with persistence being defined as the presence of organisms in the absence of replication. We hypothesized that dendritic cells (DCs) play a central role in Chlamydia immunity and immunopathology by favoring the long-term survival of C. muridarum. This hypothesis was examined based on (i) direct staining of Chlamydia in infected DCs to evaluate the development of inclusions, (ii) titration of infected DCs on HeLa cells to determine cultivability, and (iii) transfer of Chlamydia-infected DCs to naive mice to evaluate infectivity. The results show that Chlamydia survived within DCs and developed both typical and atypical inclusions that persisted in a subpopulation of DCs for more than 9 days after infection. Since the cultivability of Chlamydia from DCs onto HeLa was lower than that estimated by the number of inclusions in DCs, this suggests that the organisms may be in state of persistence. Intranasal transfer of long-term infected DCs or DCs purified from the lungs of infected mice caused mouse lung infection, suggesting that in addition to persistent forms, infective Chlamydia organisms also developed within chronically infected DCs. Interestingly, after in vitro infection with Chlamydia, most DCs died. However, Chlamydia appeared to survive in a subpopulation of DCs that resisted infection-induced cell death. Surviving DCs efficiently presented Chlamydia antigens to Chlamydia-specific CD4+ T cells, suggesting that the bacteria are able to both direct their own survival and still allow DC antigen-presenting function. Together, these results raise the possibility that Chlamydia-infected DCs may be central to the maintenance of T-cell memory that underlies both immunity and immunopathology.
    Infection and Immunity 09/2007; 75(8):3707-14. · 4.07 Impact Factor