Soomin Shim

Washington University in St. Louis, San Luis, Missouri, United States

Are you Soomin Shim?

Claim your profile

Publications (5)35.99 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ESCRT machinery along with the AAA+ ATPase Vps4 drive membrane scission for trafficking into multivesicular bodies in the endocytic pathway and for the topologically related processes of viral budding and cytokinesis, but how they accomplish this remains unclear. Using deep-etch electron microscopy, we find that endogenous ESCRT-III filaments stabilized by depleting cells of Vps4 create uniform membrane-deforming conical spirals which are assemblies of specific ESCRT-III heteropolymers. To explore functional roles for ESCRT-III filaments, we examine HIV-1 Gag-mediated budding of virus-like particles and find that depleting Vps4 traps ESCRT-III filaments around nascent Gag assemblies. Interpolating between the observed structures suggests a new role for Vps4 in separating ESCRT-III from Gag or other cargo to allow centripetal growth of a neck constricting ESCRT-III spiral.
    eLife. 05/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ESCRT (endosomal sorting complex required for transport) machinery comprises a set of protein complexes that regulate sorting and trafficking into multivesicular bodies en route to the lysosome. The physical mechanism responsible for generating lumenal vesicles in this pathway is unknown. Here we review recent studies suggesting that components of the ESCRT-III complex drive lumenal vesicle formation and consider possible mechanisms for this reaction.
    Current opinion in cell biology 07/2009; 21(4):568-74. · 14.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The AAA+ ATPase VPS4 plays an essential role in multivesicular body biogenesis and is thought to act by disassembling ESCRT-III complexes. VPS4 oligomerization and ATPase activity are promoted by binding to LIP5. LIP5 also binds to the ESCRT-III like protein CHMP5/hVps60, but how this affects its function remains unclear. Here we confirm that LIP5 binds tightly to CHMP5, but also find that it binds well to additional ESCRT-III proteins including CHMP1B, CHMP2A/hVps2-1, and CHMP3/hVps24 but not CHMP4A/hSnf7-1 or CHMP6/hVps20. LIP5 binds to a different region within CHMP5 than within the other ESCRT-III proteins. In CHMP1B and CHMP2A, its binding site encompasses sequences at the proteins' extreme C-termini that overlap with "MIT interacting motifs" (MIMs) known to bind to VPS4. We find unexpected evidence of a second conserved binding site for VPS4 in CHMP2A and CHMP1B, suggesting that LIP5 and VPS4 may bind simultaneously to these proteins despite the overlap in their primary binding sites. Finally, LIP5 binds preferentially to soluble CHMP5 but instead to polymerized CHMP2A, suggesting that the newly defined interactions between LIP5 and ESCRT-III proteins may be regulated by ESCRT-III conformation. These studies point to a role for direct binding between LIP5 and ESCRT-III proteins that is likely to complement LIP5's previously described ability to regulate VPS4 activity.
    Molecular biology of the cell 07/2008; 19(6):2661-72. · 5.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cataracts are a clinically diverse and genetically heterogeneous disorder of the crystalline lens and a leading cause of visual impairment. Here we report linkage of autosomal dominant "progressive childhood posterior subcapsular" cataracts segregating in a white family to short tandem repeat (STR) markers D20S847 (LOD score [Z] 5.50 at recombination fraction [theta] 0.0) and D20S195 (Z=3.65 at theta =0.0) on 20q, and identify a refined disease interval (rs2057262-(3.8 Mb)-rs1291139) by use of single-nucleotide polymorphism (SNP) markers. Mutation profiling of positional-candidate genes detected a heterozygous transversion (c.386A-->T) in exon 3 of the gene for chromatin modifying protein-4B (CHMP4B) that was predicted to result in the nonconservative substitution of a valine residue for a phylogenetically conserved aspartic acid residue at codon 129 (p.D129V). In addition, we have detected a heterozygous transition (c.481G-->A) in exon 3 of CHMP4B cosegregating with autosomal dominant posterior polar cataracts in a Japanese family that was predicted to result in the missense substitution of lysine for a conserved glutamic acid residue at codon 161 (p.E161K). Transfection studies of cultured cells revealed that a truncated form of recombinant D129V-CHMP4B had a different subcellular distribution than wild type and an increased capacity to inhibit release of virus-like particles from the cell surface, consistent with deleterious gain-of-function effects. These data provide the first evidence that CHMP4B, which encodes a key component of the endosome sorting complex required for the transport-III (ESCRT-III) system of mammalian cells, plays a vital role in the maintenance of lens transparency.
    The American Journal of Human Genetics 09/2007; 81(3):596-606. · 11.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endosomal sorting complex required for transport-III (ESCRT-III) is a large complex built from related ESCRT-III proteins involved in multivesicular body biogenesis. Little is known about the structure and function of this complex. Here, we compare four human ESCRT-III proteins - hVps2-1/CHMP2a, hVps24/CHMP3, hVps20/CHMP6, and hSnf7-1/CHMP4a - to each other, studying the effects of deleting predicted alpha-helical domains on their behavior in transfected cells. Surprisingly, removing approximately 40 amino acids from the C-terminus of each protein unmasks a common ability to associate with endosomal membranes and assemble into large polymeric complexes. Expressing these truncated ESCRT-III proteins in cultured cells causes ubiquitinated cargo to accumulate on enlarged endosomes and inhibits viral budding, while expressing full-length proteins does not. hVps2-1/CHMP2a lacking its C-terminal 42 amino acids further fails to bind to the AAA+ adenosine triphosphatase VPS4B/SKD1, indicating that C-terminal sequences are important for interaction of ESCRT-III proteins with VPS4. Overall, our study supports a model in which ESCRT-III proteins cycle between a default 'closed' state and an activated 'open' state under control of sequences at their C-terminus and associated factors.
    Traffic 09/2007; 8(8):1068-79. · 4.65 Impact Factor

Publication Stats

228 Citations
35.99 Total Impact Points


  • 2007–2014
    • Washington University in St. Louis
      • • Department of Cell Biology and Physiology
      • • Department of Ophthalmology and Visual Sciences
      San Luis, Missouri, United States