Petr Strnad

École Polytechnique Fédérale de Lausanne, Lausanne, VD, Switzerland

Are you Petr Strnad?

Claim your profile

Publications (5)50.31 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Centrioles are essential for forming cilia, flagella, and centrosomes and are thus critical for a range of fundamental cellular processes. Despite their importance, the mechanisms governing centriole biogenesis remain incompletely understood. We performed a high-content genome-wide small-interfering-RNA-based screen to identify genes regulating centriole formation in human cells. We designed an algorithm to automatically detect GFP-Centrin foci that, combined with subsequent manual analysis, allowed us to identify 44 genes required for centriole formation and 32 genes needed for restricting centriole number. Detailed follow-up characterization uncovered that the C2 domain protein C2CD3 is required for distal centriole formation and suggests that it functions in the basal body to template primary cilia. Moreover, we found that the E3 ubiquitin ligase TRIM37 prevents centriole reduplication events. We developed a dynamic web interface containing all images and numerical features as a powerful resource to investigate facets of centrosome biology.
    Developmental Cell 06/2013; · 12.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Centrosomes are the principal microtubule organizing centers (MTOCs) of animal cells and comprise a pair of centrioles surrounded by pericentriolar material (PCM). Centriole number must be carefully regulated, notably to ensure bipolar spindle formation and thus faithful chromosome segregation. In the germ line of most metazoan species, centrioles are maintained during spermatogenesis, but eliminated during oogenesis. Such differential behavior ensures that the appropriate number of centrioles is present in the newly fertilized zygote. Despite being a fundamental feature of sexual reproduction in metazoans, the mechanisms governing centriole elimination during oogenesis are poorly understood. Here, we investigate this question in C. elegans. Using antibodies directed against centriolar components and serial-section electron microscopy, we establish that centrioles are eliminated during the diplotene stage of the meiotic cell cycle. Moreover, we show that centriole elimination is delayed upon depletion of the helicase CGH-1. We also find that somatic cells make a minor contribution to this process, and demonstrate that the germ cell karyotype is important for timely centriole elimination. These findings set the stage for a mechanistic dissection of centriole elimination in a metazoan organism.
    Development 05/2012; 139(9):1670-9. · 6.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with MCPH (autosomal recessive primary microcephaly) exhibit impaired brain development, presumably due to the compromised function of neuronal progenitors. Seven MCPH loci have been identified, including one that encodes centrosome protein 4.1 associated protein (CPAP; also known as centromere protein J, CENPJ). CPAP is a large coiled-coil protein enriched at the centrosome, a structure that comprises two centrioles and surrounding pericentriolar material (PCM). CPAP depletion impairs centriole formation, whereas CPAP overexpression results in overly long centrioles. The mechanisms by which CPAP MCPH patient mutations affect brain development are not clear. Here, we identify CPAP protein domains crucial for its centriolar localization, as well as for the elongation and the formation of centrioles. Furthermore, we demonstrate that conditions that resemble CPAP MCPH patient mutations compromise centriole formation in tissue culture cells. Using adhesive micropatterns, we reveal that such defects correlate with a randomization of spindle position. Moreover, we demonstrate that the MCPH protein SCL/TAL1 interrupting locus (STIL) is also essential for centriole formation and for proper spindle position. Our findings are compatible with the notion that mutations in CPAP and STIL cause MCPH because of aberrant spindle positioning in progenitor cells during brain development.
    Journal of Cell Science 11/2011; 124(Pt 22):3884-93. · 5.88 Impact Factor
  • Petr Strnad, Pierre Gönczy
    [Show abstract] [Hide abstract]
    ABSTRACT: The centrosome comprises a pair of centrioles and associated pericentriolar material, and it is the principal microtubule-organizing centre of most animal cells. Like the genetic material, the centrosome is duplicated once and only once during the cell cycle. Despite the fact that both doubling events are crucial for genome integrity, the understanding of the mechanisms governing centrosome duplication has lagged behind the fuller knowledge of DNA replication. Here, we review recent findings that provide important mechanistic insights into how a single procentriole forms next to each centriole once per cell cycle, thus ensuring that one centrosome becomes two.
    Trends in cell biology 08/2008; 18(8):389-96. · 12.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Centrosome duplication involves the formation of a single procentriole next to each centriole, once per cell cycle. The mechanisms governing procentriole formation and those restricting its occurrence to one event per centriole are poorly understood. Here, we show that HsSAS-6 is necessary for procentriole formation and that it localizes asymmetrically next to the centriole at the onset of procentriole formation. HsSAS-6 levels oscillate during the cell cycle, with the protein being degraded in mitosis and starting to accumulate again at the end of the following G1. Our findings indicate that APC(Cdh1) targets HsSAS-6 for degradation by the 26S proteasome. Importantly, we demonstrate that increased HsSAS-6 levels promote formation of more than one procentriole per centriole. Therefore, regulated HsSAS-6 levels normally ensure that each centriole seeds the formation of a single procentriole per cell cycle, thus playing a fundamental role in driving the centrosome duplication cycle and ensuring genome integrity.
    Developmental Cell 09/2007; 13(2):203-13. · 12.86 Impact Factor

Publication Stats

229 Citations
50.31 Total Impact Points

Institutions

  • 2007–2012
    • École Polytechnique Fédérale de Lausanne
      • • Institut suisse de recherche expérimentale sur le cancer
      • • Faculté des Sciences de la Vie
      Lausanne, VD, Switzerland
    • Eawag: Das Wasserforschungs-Institut des ETH-Bereichs
      Duebendorf, Zurich, Switzerland