Are you Inger Skånberg?

Claim your profile

Publications (4)9.8 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The results of 18 months mouse and 24 months rat carcinogenicity studies with the oral direct thrombin inhibitor ximelagatran are presented. In the mouse, gavage doses of ximelagatran up to 180 μmol/kg per d produced no neoplastic changes in any of the tissues examined. In the rat, gavage doses up to 240 μmol/kg per d produced multiple macroscopically detectable nodules in the pancreas, which are seen to be focal/multifocal acinar cell hyperplasia and focal/multifocal acinar cell adenoma upon histological evaluation. There were no other treatment-related effects on tumor incidence or distribution in the rat. The studies show a clear species difference in pancreatic effects between the rat and the mouse to long-term treatment with ximelagatran.
    International Journal of Toxicology 06/2012; 31(4):348-57. · 1.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tesaglitazar was developed as a dual peroxisome proliferator-activated receptor (PPARα/γ). To support the clinical program, a hamster carcinogenicity study was performed. The only neoplastic findings possibly related to treatment with tesaglitazar were low incidences of hemangioma and hemangiosarcoma in the liver of male animals. A high-power, two-year investigative study with interim necropsies was performed to further elucidate these findings. Treatment with tesaglitazar resulted in changes typical for exaggerated PPARα pharmacology in rodents, such as hepatocellular hypertrophy and hepatocellular carcinoma, but not an increased frequency of hemangiosarcomas. At the highest dose level, there was an increased incidence of sinusoidal dilatation and hemangiomas. No increased endothelial cell (EC) proliferation was detected in vivo, which was confirmed by in vitro administration to ECs. Immunohistochemistry and gene expression analyses indicated increased cellular stress and vascular endothelial growth factor (VEGF) expression in the liver, which may have contributed to the sinusoidal dilatation. A two-fold increase in the level of circulating VEGF was detected in the hamster at all dose levels, whereas no effect on VEGF was observed in patients treated with tesaglitazar. In conclusion, investigations have demonstrated that tesaglitazar does not produce hemangiosarcomas in hamster despite a slight effect on vascular morphology in the liver.
    Toxicologic Pathology 11/2011; 40(1):18-32. · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dual peroxisome-proliferator-activated receptor (PPAR) α/γ agonist tesaglitazar has been shown to produce fibrosarcomas in rats. Here, the authors studied morphology, proliferation, differentiation, and inflammation markers in adipose tissue from rats exposed to 1, 3, or 10 µmol/kg tesaglitazar for 2 or 12 weeks, including recovery groups (12 weeks treatment followed by 12 weeks recovery), and 3 or 10 µmol/kg tesaglitazar for 24 weeks. Subcutaneous white and brown fat revealed reversible dose-related histopathological alterations and after 12 and 24 weeks developed areas of thickened skin (fatty lumps). There was a dose-dependent increase in proliferation of interstitial cells in white and brown fat as shown by increased mitotic index in all dose groups after 2 weeks. This was limited to the high dose after 12 and 24 weeks in white fat. Gene expression analyses showed that while tesaglitazar induced differentiation of adipose tissue characterized with a switch in cyclin D1 and D3 mRNA by 12 weeks, longer exposure at high doses reversed this differentiation concurrent with a reappearance of early adipocyte and inflammatory markers. These data suggest that sustained increased turnover of mesenchymal cells in adipose tissues, concomitant with onset of inflammation and fibrosis, drives development of fibrosarcomas in rats treated with tesaglitazar.
    Toxicologic Pathology 01/2011; 39(2):325-36. · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of the dual peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist tesaglitazar as an oral antidiabetic was recently discontinued. Here we present tumor data from a 2-year carcinogenicity study in rats given 0.3, 1, 3, and 10 micromol/kg tesaglitazar is presented with focus on the findings of subcutaneous fibrosarcomas. To investigate the mechanism for induction of fibrosarcomas, replicative DNA synthesis (immunohistochemical detection of BrdU-labeled cells) and expression of PPARgamma (immunohistochemistry and reverse transcription-polymerase chain reaction) in subcutaneous adipose tissues was assessed in rats administered 1 or 10 micromol/kg for 2 weeks or 3 months. Poorly differentiated subcutaneous mesenchymal sarcomas with a predominant spindle cell appearance occurred at the highest dose level of 10 micromol/kg in both sexes, and these tumors were diagnosed as fibrosarcomas. The 10-micromol/kg dose was at or above the maximum tolerated dose and caused considerable cardiovascular mortality. Tesaglitazar stimulated DNA synthesis mainly in subcutaneous interstitial mesenchymal cells. The percentage of BrdU-labeled interstitial cells was increased at 1 and 10 micromol/kg after 2 weeks. The increase in DNA synthesis was still significant at the end of the 12-week treatment at 10 mumol/kg, the dose producing fibrosarcoma. However, at 1 micromol/kg, a dose below the no-observed-effect level for fibrosarcoma, the level of DNA synthesis was similar to control levels at 12 weeks. Immunohistochemical analyses showed no detectable PPARgamma protein in the majority of BrdU-labeled interstitial mesenchymal cells in white and brown fat. This indicates that stimulation of DNA synthesis is not mediated via direct activation of PPARgamma in these cells. The results suggest that the induction of rat fibrosarcoma by tesaglitazar, at exposures 100-fold above the human therapeutic exposure, may involve proliferation of undifferentiated mesenchymal cells in subcutaneous tissues.
    Toxicological Sciences 08/2007; 98(1):63-74. · 4.33 Impact Factor