Sue Howell

University of Georgia, Атина, Georgia, United States

Are you Sue Howell?

Claim your profile

Publications (5)8.09 Total impact

  • Source
    International Journal for Parasitology: Drugs and Drug Resistance. 08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ascaris lumbricoides is the most prevalent soil-transmitted helminth (STH) infection of human beings worldwide. Chemotherapy with synthetic anthelmintics such as albendazole, mebendazole, and pyrantel pamoate is the current method of treatment; however, the emergence of anthelmintic resistance could substantially decrease the efficacy of such treatments and the sustainability of STH control programs. Additionally, benzimidazoles are not recommended for pregnant women or children under age one. A blinded, controlled study was conducted to evaluate the efficacy of two microencapsulated, plant-based essential oil blends, TTN1013 (α-pinene, linalyl acetate, p-cymene, and thymol octanoate) and TTN1014 (α-pinene, linalyl acetate, p-cymene, and thymol acetate) as functional foods against Ascaris suum infection in pigs, an important pathogen that closely resembles human infections with A. lumbricoides. Four groups of 16 female, 21-24 day old, Yorkshire-cross pigs were treated daily with 0.5 or 1.0mg/kg TTN1013, 1.0mg/kg TTN1014, or 1.0mg/kg equivalent of empty capsules, delivered inside a cream-filled sandwich cookie for 14 weeks. Three days after the initiation of daily treatments, pigs were inoculated daily with A. suum eggs for 4 weeks. Pigs were weighed weekly and fecal egg counts (FEC) were conducted weekly starting five weeks after initial inoculation with A. suum eggs. Fourteen weeks after first infection with eggs, pigs were necropsied and worms were recovered, counted and separated according to sex. TTN1013 administered daily at a dose of 1.0mg/kg yielded a statistically significant reduction in total worm counts (76.8%), female worm counts (75.5%), FEC (68.6%), and worm volume (62.9%) when compared to control group. Reduction of total and female worm numbers and FEC were not significant for TTN1014 or at the 0.5mg/kg dose of TTN1013. All treatments were well-tolerated by all pigs and did not cause any adverse reactions. All pigs remained clinically normal and showed no signs of reduced intestinal health for the duration of treatment. Based on these results, TTN1013 shows promise as a daily supplement to reduce infection burdens of soil transmitted helminths in both pigs and human beings.
    Acta tropica. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An isolate of Haemonchus contortus, UGA/2004, highly resistant to benzimidazoles, levamisole, and ivermectin was isolated from sheep at the University of Georgia, and passaged through experimentally infected goats. We measured the expression of twenty-nine mRNAs encoding drug targets and P-glycoproteins (P-gps), comparing the results to a fully susceptible laboratory passaged isolate. Expression levels of some nicotinic acetylcholine receptor mRNAs were markedly different in UGA/2004. Levels of the Hco-acr-8b mRNA, encoding a truncated subunit, were very high in resistant L3, but undetectable in susceptible larvae, with expression of the full-length Hco-acr-8a mRNA also significant increased. Expression of Hco-unc-63 and Hco-unc-29.3 mRNAs was significantly reduced in the resistant larvae. Expression of the Hco-glc-3 and Hco-glc-5 mRNAs, encoding glutamate-gated chloride channel subunits, were slightly reduced in resistant larvae. We observed significant increases in the expression of the Hco-pgp-2 and Hco-pgp-9 mRNAs in the UGA/2004 larvae, consistent with previous reports; we also saw a decrease in the levels of Hco-pgp-1 mRNA. Treatment of the larvae with ivermectin and moxidectin in vitro produced variable and inconsistent changes in P-gp mRNA levels. The sequences of the β-tubulin isotype 1 mRNAs showed that the resistant larvae had a resistance-associated allele frequency of >95% at codon 200 and ∼40% and codon 167. No changes at codon 198 were present. The presence of the truncated acr-8b mRNA may be a reliable indicator of levamisole resistance, but complex changes in gene expression associated with macrocyclic lactone resistance make the identification of a single genetic marker for this resistance difficult.
    Molecular and Biochemical Parasitology 09/2011; 180(2):99-105. · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine prevalence of anthelmintic resistance on sheep and goat farms in the southeastern United States. Cross-sectional study. Sheep and goats from 46 farms in 8 southern states, Puerto Rico, and St Croix in the US Virgin Islands. Parasite eggs were isolated from fecal samples, and susceptibility to benzimidazole, imidathiazole, and avermectin-milbemycin anthelmintics was evaluated with a commercial larval development assay. Haemonchus contortus was the most common parasite on 44 of 46 farms; Trichostrongylus colubriformis was the second most commonly identified parasite. Haemonchus contortus from 45 (98%), 25 (54%), 35 (76%), and 11 (24%) farms were resistant to benzimidazole, levamisole, ivermectin, and moxidectin, respectively. Resistance to all 3 classes of anthelmintics was detected on 22 (48%) farms, and resistance to all 3 classes plus moxidectin was detected on 8 farms (17%). Findings provided strong evidence that anthelmintic resistance is a serious problem on small ruminant farms throughout the southeastern United States. Owing to the frequent movement of animals among regions, the prevalence of resistance in other regions of the United States is likely to also be high. Consequently, testing of parasite eggs for anthelmintic resistance should be a routine part of parasite management on small ruminant farms.
    Journal of the American Veterinary Medical Association 01/2009; 233(12):1913-9. · 1.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ivermectin and moxidectin are closely related avermectin/milbemycin anthelmintics and available data suggest that side resistance occurs with these two drugs. However, moxidectin remains effective against many species of ivermectin-resistant worms due to its higher potency. The larval development assay (LDA) is routinely used to diagnose ivermectin resistance in Haemonchus contortus but laboratory diagnosis of moxidectin resistance is hampered by the lack of any validated in vitro tests. The objective of this study was to measure the relative susceptibility/resistance of H. contortus to moxidectin on goat farms in Georgia, and to validate the DrenchRite LDA for detecting resistance to moxidectin. Fecal egg count reduction tests (FECRT) were performed at five different moxidectin dose levels and DrenchRite LDAs were performed in duplicate on nine meat goat farms in Georgia, USA. To improve our ability to make inferences on the relative levels of resistance between farms, FECRT data were first analysed using a linear mixed model, and then Tukey's sequential trend test was used to evaluate the trend in response across dose levels. LDA data were analysed using log-dose logit-response and probit models. Using these statistical results, we were able to rank the nine farms from the least to the most resistant, and to develop a set of criteria for interpreting DrenchRite LDA results so that this assay can be used to diagnose both clinically apparent moxidectin resistance, as well as sub-clinical emerging resistance. These results suggest that our novel approach for examining these types of data provides a method for obtaining an increased amount of information, thus permitting a more sensitive detection of resistance. Based on results of the LDA, moxidectin-resistant farms had resistance ratios, compared with an ivermectin-sensitive farm, ranging from 32 to 128, and had resistance ratios of 6-24 compared with an ivermectin-resistant/moxidectin naive farm. Moxidectin resistance was diagnosed both in Haemonchus and Trichostrongylus on almost half of the farms tested, despite this drug only being used on these farms for 2-3 years.
    International Journal for Parasitology 07/2007; 37(7):795-804. · 3.64 Impact Factor