Catherine Tenn

Defence Research and Development Canada, Ottawa, Ontario, Canada

Are you Catherine Tenn?

Claim your profile

Publications (12)34.69 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The protective effects of selected anesthetic regimens on sarin (GB) were investigated in domestic swine. At 30% oxygen, the toxicity of this agent in isoflurane anesthetized animals (LD(50)=10.1μg/kg) was similar to literature sited values in awake swine (LD(50)=11.8μg/kg) and slightly higher than that of both ketamine (LD(50)=15.6μg/kg) and propofol (LD(50)=15.3μg/kg) anesthetized swine. Use of 100% oxygen in ketamine anesthetized animals resulted in three-fold protective effects compared to 30% oxygen. Use of 100% oxygen in both isoflurane and propofol anesthetized animals, compared to 30% resulted in profound protection against GB poisoning (>33×). There were no differences in the severity of the poisoning or recovery time in animals treated over dose ranges of 10-350μg/kg (isoflurane) or 15-500μg/kg GB (propofol). Survivors of high GB challenges that were revived from propofol anesthetic exhibited no signs of cognitive impairment seven days later. Protective treatments did not attenuate cholinesterase (ChE) inhibition; survivors of otherwise supralethal GB concentrations exhibited very low blood ChE activities. This work indicates that propofol has protective effects against GB, and that oxygen tension may have an important role in treating nerve agent casualties. More importantly, it demonstrates that non-cholinergic protective mechanisms exist that may be exploited in the future development of medical countermeasures against organophosphorous nerve agents.
    Toxicology 02/2012; 294(2-3):85-93. · 4.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The link between cell death and increased cyclooxygenases-2 (COX-2) activity has not been clearly established. In this study, we examined whether COX-2 activation contributed to the mechanism of neurotoxicity produced by an organophosphorous nerve agent in cultured rat cortical neurons. Exposure of neuronal cells to the nerve agent, VX resulted in an increase in COX enzyme activity in the culture media. A concentration dependent increase in the activity levels of COX-2 enzyme was observed while there was little to no effect on COX-1. In addition, COX-2 mRNA and protein levels increased several hours post-VX exposure. Pre-treatment of the cortical cells with the COX-2 selective inhibitor, NS 398 resulted in a decrease in both the enzyme activity and prostaglandin (PGE(2) and PGF(2α)) release, as well as in a reduction in cell death. These findings indicate that the increase in COX-2 activity may contribute to the mechanism of VX-induced neurotoxicity in cultured rat cortical neuron.
    Toxicology Letters 01/2012; 210(1):71-7. · 3.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The organophosphate (OP) nerve agent VX is a weaponized chemical warfare agent that has also been used by terrorists against civilians. This contact poison produces characteristic signs of OP poisoning, including miosis, salivation, mastication, dysrhythmias and respiratory distress prior to death. Although successful treatment of OP poisoning can be obtained through decontamination and/or oxime reactivation of agent-inhibited cholinesterase, medical countermeasures that increase the therapeutic window for these measures would be of benefit. An anaesthetized swine model was utilized to examine the effects of lethal VX exposure to the skin, followed by cooling the exposure site prior to decontamination or treatment. The cooling was simply accomplished by using crushed ice in grip-seal plastic bags applied to the exposure sites. Cooling of skin exposed to lethal doses of VX significantly increased the window of opportunity for successful decontamination using the Reactive Skin Decontaminant Lotion(®) (RSDL(®)) or treatment with the oxime antidotes HI-6 and 2PAM. Analyses of blood VX levels showed that cooling acted to slow or prevent the entry of VX into the bloodstream from the skin. If the exposure site is known, the simple and non-invasive application of cooling provides a safe means with which to dramatically increase the therapeutic window in which decontamination and/or antidote treatment against VX are life-saving.
    Toxicology Letters 07/2011; 204(1):52-6. · 3.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The chemical weapon nerve agent known as Russian VX (VR) is a potent organophosphorus (OP) compound that is much less studied than its VX analogue with respect to toxicity, as well as to the effectiveness of several known countermeasures against it. An anaesthetized domestic swine model was utilized to assess several approaches in mitigating its toxicity, including the utility of cooling VR treated skin to increase the therapeutic window for treatment. The 6h LD₅₀ for VR topically applied on the ear was 100 μg/kg. Treatment of VR exposed animals (5 × LD₅₀) with pralidoxime (2PAM) very poorly regenerated inhibited blood cholinesterase activity, but was partially effective in preventing signs of OP poisoning and increasing survival. In contrast, treatment with the Hagedorn oxime HI-6 reactivated cholinesterase, eliminated all signs of poisoning and prevented death. Decontamination with the Reactive Skin Decontaminant Lotion (RSDL) 15 min after VR exposure was completely effective in preventing death. Cooling of the VR exposure sites for 2 or 6h prevented signs of OP poisoning and death during the cooling period. However, these animals died very quickly after the cessation of cooling, unless they were treated with oxime or decontaminated with RSDL. Blood analyses showed that cooling of agent exposure sites delayed the entry of VR into the bloodstream. Medical treatment with HI-6 and to a lesser extent 2PAM, or decontamination with RSDL are effective in protecting against the toxic effects of cutaneous exposure to VR. Immobilizing this agent (and related compounds) within the dermal reservoir by cooling the exposure sites, dramatically increases the therapeutic window in which these medical countermeasures are effective.
    Toxicology Letters 06/2011; 206(1):47-53. · 3.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effect of ionic environment on sulphur mustard (bis 2-chloroethyl sulphide; HD) toxicity was examined in CHO-K1 cells. Cultures were treated with HD in different ionic environments at constant osmolar conditions (320 mOsM, pH 7.4). The cultures were refed with fresh culture medium 1h after HD exposure, and viability was assessed. Little toxicity was apparent when HD exposures were carried out in ion-free sucrose buffer compared to LC(50) values of approximately 100-150 microM when the cultures were treated with HD in culture medium. Addition of NaCl to the buffer increased HD toxicity in a salt concentration-dependent manner to values similar to those obtained in culture medium. HD toxicity was dependent on both cationic and anionic species with anionic environment playing a much larger role in determining toxicity. Substitution of NaI for NaCl in the treatment buffers increased HD toxicity by over 1000%. The activity of the sodium hydrogen exchanger (NHE) in recovering from cytosolic acidification in salt-free and in different chloride salts did not correlate with the HD-induced toxicity in these buffers. However, the inhibition by HD of intracellular pH regulation correlated with its toxicity in NaCl, NaI and sucrose buffers. Analytical chemical studies and the toxicity of the iodine mustard derivative ruled out the role of chemical reactions yielding differentially toxic species as being responsible for the differences in HD toxicity observed. This work demonstrates that the early events that HD sets into motion to cause toxicity are dependent on ionic environment, possibly due to intracellular pH deregulation.
    Toxicology and Applied Pharmacology 09/2010; 247(3):179-90. · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maitotoxin (MTX) is one of the most potent toxins known to date. It causes massive calcium (Ca(2+)) influx and necrotic cell death in various tissues. However, the exact mechanism(s) underlying its cellular toxicity is not fully understood. In the present study, the role of the sodium hydrogen exchanger (NHE) in MTX-induced increases in intracellular Ca(2+) and subsequent cell death were investigated in cultured rat cortical neurons. Intracellular Ca(2+) concentrations ([Ca(2+)](i)) were measured fluorimetrically using FURA-2 as the fluorescence indicator. Cell death was measured with the alamarBlue cell viability assay and the vital dye ethidium bromide (EB) uptake assay. Results showed that MTX increased, in a concentration dependent manner, both [Ca(2+)](i) and cell death in cortical neurons. Decreasing the pH of the treatment medium from 7.5 to 6.0 diminished MTX-induced cell death. The protection offered by lowering extracellular pH was not due to MTX degradation, because it was still effective even if the cells were treated with MTX in normal pH and then switched to a lower pH. Pretreatment of cells with the specific NHE inhibitor, 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), prevented MTX-induced increases in [Ca(2+)](i), as well as cell death in a concentration dependent manner. Furthermore, knockdown of NHE1 by SiRNA transfection suppressed MTX-induced cell death in human embryonic kidney (HEK) cells. Together, these results suggest that NHE1 plays a major role in MTX-induced neurotoxicity.
    Toxicon 04/2009; 54(2):95-102. · 2.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An anesthetized domestic swine model was used to compare the efficacy and cross-contamination potential of selected skin decontaminant products and regimens against the chemical warfare agent, VX. Animals topically exposed to 2x, 3x or 5x LD(50) VX showed typical signs of organophosphate nerve agent poisoning, including miosis, salivation, mastication, dysrhythmias, and respiratory distress prior to death. Animals were exposed to 5x LD(50) VX and then decontaminated 45 min later with the reactive skin decontamination lotion (RSDL), Fuller's earth (FE), 0.5% hypochlorite, or soapy water. Survival was 100% when the reactive skin decontamination lotion or FE was utilized, although 50% of Fuller's earth-decontaminated animals exhibited serious signs of VX poisoning. Decontamination of VX-treated animals with 0.5% hypochlorite was less effective but also increased survival. Soapy water was ineffective in preventing lethality. Blood cholinesterase levels were not predictive of clinical outcome in decontaminated animals. The potential of "decontaminated" VX in open wounds to cause poisoning was assessed by vigorously mixing 5x LD(50) VX with the test decontaminants for 5 min and then placing the mixture onto a full-thickness skin wound. Soapy water was ineffective in preventing lethality. Although treatment with dry Fuller's earth prevented death and all signs of organophosphate poisoning, a significant proportion of treated animals decontaminated with Fuller's earth in aqueous suspension exhibited serious signs of organophosphate poisoning, suggesting that live agent may be desorbed from Fuller's earth when it is exposed to a liquid environment. Animals treated with reactive skin decontamination lotion or 0.5% hypochlorite-VX mixtures showed no signs of organophosphate poisoning during the 6- h test period.
    Human &amp Experimental Toxicology 03/2008; 27(3):253-61. · 1.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dependence of sulphur mustard (HD) toxicity on intracellular (pH(i)) and extracellular pH was examined in CHO-K1 cells. HD produced an immediate and significant concentration-dependent decline in cytosolic pH, and also inhibited the mechanisms responsible for restoring pH(i) to physiological values. The concentration-response of HD-induced cytosolic acidification, closely paralleled the acidification of the extracellular buffer through HD hydrolysis. A viability study was carried out in order to assess the importance of HD-induced cytosolic acidification. Cultures were exposed to HD for 1 h in media that were adjusted through a pH range (pH 5.0-10), and the 24 h LC(50) values were assessed using the viability indicator dye alamarBlue. The toxicity of HD was found to be dependent on extracellular pH, with a greater than eight-fold increase in LD(50) obtained in cultures treated with HD at pH 9.5, compared to those treated at pH 5.0. Assays of apoptotic cell death, including morphology, soluble DNA, caspase-3 activity and TUNEL also showed that as pH was increased, much greater HD concentrations were required to cause cell death. The modest decline in HD half-life measured in buffers of increasing pH, did not account for the protective effects of basic pH. The early event(s) that HD initiates to eventually culminate in cell death are not known. However, based on the data obtained in this study, we propose that HD causes an extracellular acidification through chemical hydrolysis and that this, in both a concentration and temporally related fashion, results in cytosolic acidification. Furthermore, HD also acts to poison the antiporter systems responsible for maintaining physiological pH(i), so that the cells are unable to recover from this insult. It is this irreversible decline in pH(i) that initiates the cascade of events that results in HD-induced cell death.
    Toxicology and Applied Pharmacology 07/2007; 221(3):363-71. · 3.98 Impact Factor
  • Catherine C Tenn, Yushan Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure of cell cultures to organophosphorous compounds such as VX can result in cell death. However, it is not clear whether VX-induced cell death is necrotic or involves programmed cell death mechanisms. Activation of caspases, a family of cysteine proteases, is often involved in cell death, and in particular, caspase-3 activation appears to be a key event in programmed cell death processes including apoptosis. In this study, we investigated VX-induced neuronal cell death, as well as the underlying mechanism in terms of its effect on caspase-3 activity. Primary cortical neuronal cultures were prepared from gestational days 17 to 19 Sprague Dawley rat fetuses. At maturation, the cells were treated with varying concentrations of VX and cell death was evaluated by lactate dehydrogenase (LDH) release. VX induced an increase in LDH release in a concentration-dependent manner. Morphological VX-induced cell death was also characterized by using nuclear staining with propidium iodide and Hoechst 33342. VX induced a concentration- and time-dependent increase in caspase-3 activation. Caspase-3 activation was also confirmed by the proteolytic cleavage of poly(ADP-ribose)polymerase (PARP), an endogenous caspase-3 substrate. These data suggested that in rat cortical neurons, VX-induced cell death via a programmed cell death pathway that involves changes in caspase-3 protease.
    Neuroscience Letters 06/2007; 417(2):155-9. · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the three most commonly used large mammal species in the safety assessment of drugs remain the dog, the macaque and the marmoset, swine, especially minipigs, have also been widely used over the years in many toxicological studies. Swine present a number of interesting biological and physiological characteristics. Similarities in skin properties with humans have led to extensive in vitro and in vivo studies. There is a specific interest in cardiovascular research, as well as in anaesthesiology and critical care medicine due to common features of swine and human physiology. Although knowledge of swine brain structure and functions remains incomplete, data does exist. The multiple blood sampling that is necessary in pharmacokinetic and toxicokinetic studies are possible, as well as multiparametric monitoring and interventions with equipment used in human clinical settings. Practicality (handling), scientific (stress reduction) and ethical (invasive monitoring) reasons have led research teams to incorporate anaesthesia into their paradigms which makes the analysis of data increasingly difficult. Although not substantiated by scientific data, the swine appears to have an intermediate position in the scale of public perception between non-human primates and animals commonly referred to as pets (i.e. dogs and cats) and rodents. The benefits of the swine model justify the use of these animals in the design of more effective medical countermeasures against known chemical warfare agents (nerve agents, vesicants and lung damaging agents). Exposure to organophosphorus (OP) pesticides represents a severe health issue in developing countries, while OP intoxication with the more lethal military nerve agents is not only of military concern but also a terrorist threat. Tailoring therapeutic regimens to the reality of OP poisoning is of the utmost importance when little experimental data and sparse human clinical data are available in the decision making process. We will present some of the advantages and disadvantages of the swine model in OP countermeasures elaborating on two examples. First, we will present the issues related to the use of anaesthesia during experimental OP poisoning and second we will show how results from experiments with swine can be integrated into a kinetic-based dynamic model to evaluate oxime efficacy. A better knowledge of OP poisoning in swine (comparative toxicokinetics, pharmacokinetics and biochemistry) is definitely necessary before accepting it as a first choice non-rodent model. However, there exists a large amount of data in the model on anaesthesia and different types of shock favouring their use for evaluation of complex situations such as the anaesthesia of OP poisoned patients and combined injuries.
    Toxicology 05/2007; 233(1-3):128-44. · 4.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exposure of the central nervous system to organophosphorus (OP) nerve agents induces seizures and neuronal cell death. Here we report that the OP nerve agent, VX, induces apoptotic-like cell death in cultured rat cortical neurons. The VX effects on neurons were concentration-dependent, with an IC(50) of approximately 30 microM. Blockade of N-methyl-D-aspartate receptors (NMDAR) with 50 microM. D-2-amino-5-phosphonovalerate (APV) diminished 30 microM VX-induced total cell death, as assessed by alamarBlue assay and Hoechst staining. In contrast, neither antagonists of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) nor metabotropic glutamate receptors (mGluRs) had any effect on VX-induced neurotoxicity. VX-induced neuronal cell death could not be solely attributed to acetylcholinesterase (AChE) inhibition, since neither the reversible pharmacological cholinesterase inhibitor, physostigmine, nor the muscarinic receptor antagonist, atropine, affected VX-induced cell death. Importantly, APV was found to be therapeutically effective against VX-induced cell death up to 2 h post VX exposure. These results suggest that NMDARs, but not AMPARs or mGluRs, play important roles in VX-induced cell death in cultured rat cortical neurons. Based on their therapeutic effects, NMDAR antagonists may be beneficial in the treatment of VX-induced neurotoxicities.
    Neurotoxicity Research 13(3-4):163-72. · 2.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dependence of sulphur mustard (HD) toxicity on intracellular (pH i) and extracellular pH was examined in CHO-K1 cells. HD produced an immediate and significant concentration-dependent decline in cytosolic pH, and also inhibited the mechanisms responsible for restoring pH i to physiological values. This concentration response closely paralleled the acidification of the extracellular buffer through HD hydrolysis. A viability study was carried out in order to assess the importance of HD-induced cytosolic acidification. Cultures were exposed to HD for 1 hr in media that was adjusted through a pH range (pH 5.0 – pH 10), and the 24 hr LC 50 values were assessed using the viability indicator dye alamarBlue™. The toxicity of HD was found to be dependent on extracellular pH, with a greater than eight-fold increase in LD 50 obtained in cultures treated with HD at pH 9.5, compared to those treated at pH 5.0. Assays of apoptotic cell death, including morphology, soluble DNA, caspase-3 activity and TUNEL also showed that as pH was increased, much greater HD concentrations were required to cause cell death. The modest decline in HD half-life measured in buffers of increasing pH, did not account for the protective effects of basic pH. We propose that HD causes an extracellular acidification through chemical hydrolysis and that this, in both a concentration and temporally related fashion, results in cytosolic acidification. Furthermore, HD also acts to poison the antiporter systems responsible for maintaining physiological pH i , so that the cells are unable to recover from this insult. It is this irreversible decline in pH i that initiates the cascade of events that results in HD induced cell death.