Gilles-Eric Séralini

Université de Caen Basse-Normandie, Caen, Lower Normandy, France

Are you Gilles-Eric Séralini?

Claim your profile

Publications (37)63.78 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In glyphosate (G)-based herbicides (GBHs), the declared active principle G is mixed with several adjuvants that help it to penetrate the plants' cell membranes and its stabilization and liposolubility. Its utilization is growing with genetically modified organisms engineered to tolerate GBH. Millions of farmers suffer poisoning and death in developing countries, and occupational exposures and suicide make GBH toxicity a worldwide concern. As GBH is found in human plasma, widespread hospital facilities for measuring it should be encouraged. Plasma determination is an essential prerequisite for risk assessment in GBH intoxication. Only when standard ECGs were performed, at least one abnormal ECG was detected in the large majority of cases after intoxication. QTc prolongation and arrhythmias along with first-degree atrioventricular block were observed after GBH intoxication. Thus, life-threatening arrhythmias might be the cause of death in GBH intoxication. Cardiac cellular effects of GBH were reviewed along with few case reports in men and scanty larger studies. We observed in two mammalian species (rats and rabbits) direct cardiac electrophysiological changes, conduction blocks and arrhythmias among GBH-mediated effects. Plasmatic (and urine) level determinations of G and electrocardiographic Holter monitoring seem warranted to ascertain whether cardiovascular risk among agro-alimentary workers might be defined.
    Cardiovascular toxicology. 09/2014;
  • Source
    Environmental Sciences Europe. 06/2014; 26:14.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Roundup is the major pesticide used in agriculture worldwide; it is a glyphosate-based herbicide. Its molecular effects are studied following an acute exposure (0.5%) of fifteen 60-day-old male rats during an 8-day period. Endocrine (aromatase, estrogen and androgen receptors, Gper1 in testicular and sperm mRNAs) and testicular functions (organ weights, sperm parameters and expression of the blood-testis barrier markers) were monitored at days 68, 87, and 122 after treatment, spermiogenesis and spermatogenesis. The major disruption is an increase of aromatase mRNA levels at least by 50% in treated rats at all times, as well as the aromatase protein. We have also shown a similar increase of Gper1 expression at day 122 and a light modification of BTB markers. A rise of abnormal sperm morphology and a decrease of the expression of protamine 1 and histone 1 testicular in epididymal sperm are observed despite a normal sperm concentration and motility.
    Environmental toxicology and pharmacology. 05/2014; 38(1):131-140.
  • Source
    Robin Mesnage, Gilles-Eric Séralini
    in Practical Food Safety: Contemporary Issues and Future Directions (eds R. Bhat and V. M. Gómez-López), John Wiley & Sons, Ltd, Chichester, UK. 04/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pesticides are used throughout the world as mixtures called formulations. They contain adjuvants, which are often kept confidential and are called inerts by the manufacturing companies, plus a declared active principle, which is usually tested alone. We tested the toxicity of 9 pesticides, comparing active principles and their formulations, on three human cell lines (HepG2, HEK293, and JEG3). Glyphosate, isoproturon, fluroxypyr, pirimicarb, imidacloprid, acetamiprid, tebuconazole, epoxiconazole, and prochloraz constitute, respectively, the active principles of 3 major herbicides, 3 insecticides, and 3 fungicides. We measured mitochondrial activities, membrane degradations, and caspases 3/7 activities. Fungicides were the most toxic from concentrations 300-600 times lower than agricultural dilutions, followed by herbicides and then insecticides, with very similar profiles in all cell types. Despite its relatively benign reputation, Roundup was among the most toxic herbicides and insecticides tested. Most importantly, 8 formulations out of 9 were up to one thousand times more toxic than their active principles. Our results challenge the relevance of the acceptable daily intake for pesticides because this norm is calculated from the toxicity of the active principle alone. Chronic tests on pesticides may not reflect relevant environmental exposures if only one ingredient of these mixtures is tested alone.
    BioMed research international. 01/2014; 2014:179691.
  • Source
    Food and Chemical Toxicology 01/2014; 63:244. · 3.01 Impact Factor
  • Source
    Robin Mesnage, steeve gress, Nicolas Defarge, Gilles-Eric Séralini
    Theorie in der Ökologie. 01/2013; 17:118.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our recent work (Séralini et al., 2012) remains to date the most detailed study involving the life-long consumption of an agricultural genetically modified organism (GMO). This is true especially for NK603 maize for which only a 90-day test for commercial release was previously conducted using the same rat strain (Hammond et al., 2004). It is also the first long term detailed research on mammals exposed to a highly diluted pesticide in its total formulation with adjuvants. This may explain why 75% of our first criticisms arising within a week, among publishing authors, come from plant biologists, some developing patents on GMOs, even if it was a toxicological paper on mammals, and from Monsanto Company who owns both the NK603 GM maize and Roundup herbicide (R). Our study has limits like any one, and here we carefully answer to all criticisms from agencies, consultants and scientists, that were sent to the Editor or to ourselves. At this level, a full debate is biased if the toxicity tests on mammals of NK603 and R obtained by Monsanto Company remain confidential and thus unavailable in an electronic format for the whole scientific community to conduct independent scrutiny of the raw data. In our article, the conclusions of long-term NK603 and Roundup toxicities came from the statistically highly discriminant findings at the biochemical level in treated groups in comparison to controls, because these findings do correspond in an blinded analysis to the pathologies observed in organs, that were in turn linked to the deaths by anatomopathologists. GM NK603 and R cannot be regarded as safe to date.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 11/2012; · 2.99 Impact Factor
  • Source
  • Source
    Emilie Clair, Robin Mesnage, Carine Travert, Gilles-Éric Séralini
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The health effects of a Roundup-tolerant genetically modified maize (from 11% in the diet), cultivated with or without Roundup, and Roundup alone (from 0.1 ppb in water), were studied 2 years in rats. In females, all treated groups died 2–3 times more than controls, and more rapidly. This difference was visible in 3 male groups fed GMOs. All results were hormone and sex dependent, and the pathological profiles were comparable. Females developed large mammary tumors almost always more often than and before controls, the pituitary was the second most disabled organ; the sex hormonal balance was modified by GMO and Roundup treatments. In treated males, liver congestions and necrosis were 2.5–5.5 times higher. This pathology was confirmed by optic and transmission electron microscopy. Marked and severe kidney nephropathies were also generally 1.3–2.3 greater. Males presented 4 times more large palpable tumors than controls which occurred up to 600 days earlier. Biochemistry data confirmed very significant kidney chronic deficiencies; for all treatments and both sexes, 76% of the altered parameters were kidney related. These results can be explained by the non linear endocrine-disrupting effects of Roundup, but also by the overexpression of the transgene in the GMO and its metabolic consequences.
    Food and Chemical Toxicology 09/2012; · 3.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Use of many pesticide products poses the problem of their effects on environment and health. Amongst them, the effects of glyphosate with its adjuvants and its by-products are regularly discussed. The aim of the present study was to shed light on the real impact on biodiversity and ecosystems of Roundup(®), a major herbicide used worldwide, and the glyphosate it contains, by the study of their effects on growth and viability of microbial models, namely, on three food microorganisms (Geotrichum candidum, Lactococcus lactis subsp. cremoris and Lactobacillus delbrueckii subsp. bulgaricus) widely used as starters in traditional and industrial dairy technologies. The presented results evidence that Roundup(®) has an inhibitory effect on microbial growth and a microbicide effect at lower concentrations than those recommended in agriculture. Interestingly, glyphosate at these levels has no significant effect on the three studied microorganisms. Our work is consistent with previous studies which demonstrated that the toxic effect of glyphosate was amplified by its formulation adjuvants on different human cells and other eukaryotic models. Moreover, these results should be considered in the understanding of the loss of microbiodiversity and microbial concentration observed in raw milk for many years.
    Current Microbiology 02/2012; 64(5):486-91. · 1.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We tested the presence of glyphosate in the urines of a farmer who sprayed a glyphosate based herbicide on his land, and in his family, as his children were born with birth defects that could be due to or promoted by pesticides. Gly-phosate residues were measured in urines a day before, during, and two days after spraying, by liquid chromatogra-phy-linear ion trap mass spectrometry. Glyphosate reached a peak of 9.5 µg/L in the farmer after spraying, and 2 µg/L were found in him and in one of his children living at a distance from the field, two days after the pulverization. Oral or dermal absorptions could explain the differential pesticide excretions, even in family members at a distance from the fields. A more detailed following of agricultural practices and family exposures should be advocated together with in-formation and recommendations.
    Journal of Environmental Protection 01/2012; 3(3):1001-1003.
  • Source
    Emilie Clair, Robin Mesnage, Carine Travert, Gilles-Éric Séralini
    [Show abstract] [Hide abstract]
    ABSTRACT: The major herbicide used worldwide, Roundup, is a glyphosate-based pesticide with adjuvants. Glyphosate, its active ingredient in plants and its main metabolite (AMPA) are among the first contaminants of surface waters. Roundup is being used increasingly in particular on genetically modified plants grown for food and feed that contain its residues. Here we tested glyphosate and its formulation on mature rat fresh testicular cells from 1 to 10000ppm, thus from the range in some human urine and in environment to agricultural levels. We show that from 1 to 48h of Roundup exposure Leydig cells are damaged. Within 24-48h this formulation is also toxic on the other cells, mainly by necrosis, by contrast to glyphosate alone which is essentially toxic on Sertoli cells. Later, it also induces apoptosis at higher doses in germ cells and in Sertoli/germ cells co-cultures. At lower non toxic concentrations of Roundup and glyphosate (1ppm), the main endocrine disruption is a testosterone decrease by 35%. The pesticide has thus an endocrine impact at very low environmental doses, but only a high contamination appears to provoke an acute rat testicular toxicity. This does not anticipate the chronic toxicity which is insufficiently tested, and only with glyphosate in regulatory tests.
    Toxicology in Vitro 12/2011; 26(2):269-79. · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose We reviewed 19 studies of mammals fed with commercialized genetically modified soybean and maize which represent, per trait and plant, more than 80% of all environmental genetically modified organisms (GMOs) cultivated on a large scale, after they were modified to tolerate or produce a pesticide. We have also obtained the raw data of 90-day-long rat tests following court actions or official requests. The data obtained include biochemical blood and urine parameters of mammals eating GMOs with numerous organ weights and histopathology findings. Methods We have thoroughly reviewed these tests from a statistical and a biological point of view. Some of these tests used controversial protocols which are discussed and statistically significant results that were considered as not being biologically meaningful by regulatory authorities, thus raising the question of their interpretations. Results Several convergent data appear to indicate liver and kidney problems as end points of GMO diet effects in the above-mentioned experiments. This was confirmed by our meta-analysis of all the in vivo studies published, which revealed that the kidneys were particularly affected, concentrating 43.5% of all disrupted parameters in males, whereas the liver was more specifically disrupted in females (30.8% of all disrupted parameters). Conclusions The 90-day-long tests are insufficient to evaluate chronic toxicity, and the signs highlighted in the kidneys and livers could be the onset of chronic diseases. However, no minimal length for the tests is yet obligatory for any of the GMOs cultivated on a large scale, and this is socially unacceptable in terms of consumer health protection. We are suggesting that the studies should be improved and prolonged, as well as being made compulsory, and that the sexual hormones should be assessed too, and moreover, reproductive and multigenerational studies ought to be conducted too.
    Environmental Sciences Europe. 01/2011; 23:10 [online].
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pollutants representative of common environmental contaminants induce intracellular toxicity in human cells, which is generally amplified in combinations. We wanted to test the common pathways of intoxication and detoxification in human embryonic and liver cell lines. We used various pollutants such as Roundup residues, Bisphenol-A and Atrazine, and five precise medicinal plant extracts called Circ1, Dig1, Dig2, Sp1, and Uro1 in order to understand whether specific molecular actions took place or not. Kidney and liver are major detoxification organs. We have studied embryonic kidney and hepatic human cell lines E293 and HepG2. The intoxication was induced on the one hand by a formulation of one of the most common herbicides worldwide, Roundup 450 GT+ (glyphosate and specific adjuvants), and on the other hand by a mixture of Bisphenol-A and Atrazine, all found in surface waters, feed and food. The prevention and curative effects of plant extracts were also measured on mitochondrial succinate dehydrogenase activity, on the entry of radiolabelled glyphosate (in Roundup) in cells, and on cytochromes P450 1A2 and 3A4 as well as glutathione-S-transferase. Clear toxicities of pollutants were observed on both cell lines at very low sub-agricultural dilutions. The prevention of such phenomena took place within 48 h with the plant extracts tested, with success rates ranging between 25-34% for the E293 intoxicated by Roundup, and surprisingly up to 71% for the HepG2. By contrast, after intoxication, no plant extract was capable of restoring E293 viability within 48 h, however, two medicinal plant combinations did restore the Bisphenol-A/Atrazine intoxicated HepG2 up to 24-28%. The analysis of underlying mechanisms revealed that plant extracts were not capable of preventing radiolabelled glyphosate from entering cells; however Dig2 did restore the CYP1A2 activity disrupted by Roundup, and had only a mild preventive effect on the CYP3A4, and no effect on the glutathione S-transferase. Environmental pollutants have intracellular effects that can be prevented, or cured in part, by precise medicinal plant extracts in two human cell lines. This appears to be mediated at least in part by the cytochromes P450 modulation.
    Journal of Occupational Medicine and Toxicology 01/2011; 6(1):3.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Worldwide used pesticides containing different adjuvants like Roundup formulations, which are glyphosate-based herbicides, can provoke some in vivo toxicity and in human cells. These pesticides are commonly found in the environment, surface waters and as food residues of Roundup tolerant genetically modified plants. In order to know their effects on cells from liver, a major detoxification organ, we have studied their mechanism of action and possible protection by precise medicinal plant extracts called Dig1. The cytotoxicity pathways of four formulations of glyphosate-based herbicides were studied using human hepatic cell lines HepG2 and Hep3B, known models to study xenobiotic effects. We monitored mitochondrial succinate dehydrogenase activity and caspases 3/7 for cell mortality and protection by Dig1, as well as cytochromes P450 1A1, 1A2, 3A4 and 2C9 and glutathione-S-transferase to approach the mechanism of actions. All the four Roundup formulations provoke liver cell death, with adjuvants having stronger effects than glyphosate alone. Hep3B are 3-5 times more sensitive over 48 h. Caspases 3/7 are greatly activated in HepG2 by Roundup at non-cytotoxic levels, and some apoptosis induction by Roundup is possible together with necrosis. CYP3A4 is specifically enhanced by Roundup at doses 400 times less than used in agriculture (2%). CYP1A2 is increased to a lesser extent together with glutathione-S-transferase (GST) down-regulation. Dig 1, non cytotoxic and not inducing caspases by itself, is able to prevent Roundup-induced cell death in a time-dependant manner with an important efficiency of up to 89%, within 48 h. In addition, we evidenced that it prevents Caspases 3/7 activation and CYP3A4 enhancement, and not GST reduction, but in turn it slightly inhibited CYP2C9 when added before Roundup. Roundup is able to provoke intracellular disruption in hepatic cell lines at different levels, but a mixture of medicinal plant extracts Dig1 can protect to some extent human cell lines against this pollutants. All this system constitutes a tool for studying liver intoxication and detoxification.
    Journal of Occupational Medicine and Toxicology 10/2010; 5:29.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We summarize the major points of international debate on health risk studies for the main commercialized edible GMOs. These GMOs are soy, maize and oilseed rape designed to contain new pesticide residues since they have been modified to be herbicide-tolerant (mostly to Roundup) or to produce mutated Bt toxins. The debated alimentary chronic risks may come from unpredictable insertional mutagenesis effects, metabolic effects, or from the new pesticide residues. The most detailed regulatory tests on the GMOs are three-month long feeding trials of laboratory rats, which are biochemically assessed. The tests are not compulsory, and are not independently conducted. The test data and the corresponding results are kept in secret by the companies. Our previous analyses of regulatory raw data at these levels, taking the representative examples of three GM maize NK 603, MON 810, and MON 863 led us to conclude that hepatorenal toxicities were possible, and that longer testing was necessary. Our study was criticized by the company developing the GMOs in question and the regulatory bodies, mainly on the divergent biological interpretations of statistically significant biochemical and physiological effects. We present the scientific reasons for the crucially different biological interpretations and also highlight the shortcomings in the experimental protocols designed by the company. The debate implies an enormous responsibility towards public health and is essential due to nonexistent traceability or epidemiological studies in the GMO-producing countries.
    International journal of biological sciences 01/2010; 6(6):590-8. · 3.17 Impact Factor
  • Source
    Robin Mesnage, Emilie Clair, Gilles-Eric Séralini
    Theorie in der Ökologie, Edited by Breckling, Verhoeven, 01/2010: pages 31-33; Peter Lang.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glyphosate-based herbicides are the most widely used across the world; they are commercialized in different formulations. Their residues are frequent pollutants in the environment. In addition, these herbicides are spread on most eaten transgenic plants, modified to tolerate high levels of these compounds in their cells. Up to 400 ppm of their residues are accepted in some feed. We exposed human liver HepG2 cells, a well-known model to study xenobiotic toxicity, to four different formulations and to glyphosate, which is usually tested alone in chronic in vivo regulatory studies. We measured cytotoxicity with three assays (Alamar Blue, MTT, ToxiLight), plus genotoxicity (comet assay), anti-estrogenic (on ERalpha, ERbeta) and anti-androgenic effects (on AR) using gene reporter tests. We also checked androgen to estrogen conversion by aromatase activity and mRNA. All parameters were disrupted at sub-agricultural doses with all formulations within 24h. These effects were more dependent on the formulation than on the glyphosate concentration. First, we observed a human cell endocrine disruption from 0.5 ppm on the androgen receptor in MDA-MB453-kb2 cells for the most active formulation (R400), then from 2 ppm the transcriptional activities on both estrogen receptors were also inhibited on HepG2. Aromatase transcription and activity were disrupted from 10 ppm. Cytotoxic effects started at 10 ppm with Alamar Blue assay (the most sensitive), and DNA damages at 5 ppm. A real cell impact of glyphosate-based herbicides residues in food, feed or in the environment has thus to be considered, and their classifications as carcinogens/mutagens/reprotoxics is discussed.
    Toxicology 07/2009; 262(3):184-91. · 4.02 Impact Factor