Shinichi Kinoshita

Kobe University, Kōbe, Hyōgo, Japan

Are you Shinichi Kinoshita?

Claim your profile

Publications (3)16.95 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An increase in the rate of gluconeogenesis is largely responsible for the hyperglycemia in individuals with type 2 diabetes, with the antidiabetes action of metformin being thought to be achieved at least in part through suppression of gluconeogenesis. We investigated whether the transcription factor KLF15 has a role in the regulation of gluconeogenesis and whether KLF15 participates in the antidiabetes effect of metformin. Here we show that KLF15 regulates the expression of genes for gluconeogenic or amino acid-degrading enzymes in coordination with the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1alpha. Liver-specific ablation of KLF15 in diabetic mice resulted in downregulation of the expression of genes for gluconeogenic or amino acid catabolic enzymes and in amelioration of hyperglycemia. Exposure of cultured hepatocytes to metformin reduced the abundance of KLF15 through acceleration of its degradation and downregulation of its mRNA. Metformin suppressed the expression of genes for gluconeogenic or amino acid-degrading enzymes in cultured hepatocytes, and these effects of metformin were attenuated by restoration of KLF15 expression. Administration of metformin to mice inhibited both the expression of KLF15 and glucose production in the liver, the latter effect also being attenuated by restoration of hepatic KLF15 expression. KLF15 plays an important role in regulation of the expression of genes for gluconeogenic and amino acid-degrading enzymes and that the inhibitory effect of metformin on gluconeogenesis is mediated at least in part by downregulation of KLF15 and consequent attenuation of the expression of such genes.
    Diabetes 07/2010; 59(7):1608-15. DOI:10.2337/db09-1679 · 8.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of hepatic gene expression is largely responsible for the control of nutrient metabolism. We previously showed that the transcription factor STAT3 regulates glucose homeostasis by suppressing the expression of gluconeogenic genes in the liver. However, the role of STAT3 in the control of lipid metabolism has remained unknown. We have now investigated the effects of hepatic overexpression of STAT3, achieved by adenovirus-mediated gene transfer, on glucose and lipid metabolism in insulin-resistant diabetic mice. Forced expression of STAT3 reduced blood glucose and plasma insulin concentrations as well as the hepatic abundance of mRNA for phosphoenolpyruvate carboxykinase. However, it also increased the plasma levels of triglyceride and total cholesterol without affecting those of low density lipoprotein- or high density lipoprotein-cholesterol. The hepatic abundance of mRNAs for fatty acid synthase and acetyl-CoA carboxylase, both of which catalyze the synthesis of fatty acids, was increased by overexpression of STAT3, whereas that of mRNAs for sterol regulatory element-binding proteins 1a, 1c, or 2 was unaffected. Moreover, the amount of mRNA for acyl-CoA oxidase, which contributes to beta-oxidation, was decreased by forced expression of STAT3. These results indicate that forced activation of STAT3 signaling in the liver of insulin-resistant diabetic mice increased the circulating levels of atherogenic lipids through changes in the hepatic expression of genes involved in lipid metabolism. Furthermore, these alterations in hepatic gene expression likely occurred through a mechanism independent of sterol regulatory element-binding proteins.
    The Kobe journal of medical sciences 02/2008; 54(4):E200-8.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoinositide-dependent kinase-1 (PDK1) is implicated in the metabolic effects of insulin as a key mediator of phosphoinositide 3-kinase-dependent signaling. Here we show that mice with liver-specific PDK1 deficiency manifest various defects in the metabolic actions of insulin in the liver as well as a type 2 diabetes-like phenotype characterized by marked hyperinsulinemia and postprandial hyperglycemia. The hepatic abundance of glucokinase, an important determinant of glucose flux and glucose-evoked signaling in hepatocytes, was substantially reduced in these mice. Restoration of hepatic glucokinase expression, with the use of an adenoviral vector, induced insulin-like effects in the liver and almost completely normalized the fasting hyperinsulinemia and postprandial hyperglycemia in these animals. These results indicate that, if the hepatic abundance of glucokinase is maintained, ingested glucose is normally disposed of even in the absence of acute activation of proximal insulin signaling, such as the activation of Akt, in the liver.
    Diabetes 05/2007; 56(4):1000-9. DOI:10.2337/db06-1322 · 8.47 Impact Factor