Jérôme Prado

Northwestern University, Evanston, Illinois, United States

Are you Jérôme Prado?

Claim your profile

Publications (21)129.27 Total impact

  • Ozlem Ece Demir, Jérôme Prado, James R Booth
    [Show abstract] [Hide abstract]
    ABSTRACT: We examine the relations of verbal and spatial working memory (WM) ability to the neural bases of arithmetic in school-age children. We independently localize brain regions subserving verbal versus spatial representations. For multiplication, higher verbal WM ability is associated with greater recruitment of the left temporal cortex, identified by the verbal localizer. For multiplication and subtraction, higher spatial WM ability is associated with greater recruitment of right parietal cortex, identified by the spatial localizer. Depending on their WM ability, children engage different neural systems that manipulate different representations to solve arithmetic problems.
    Developmental Neuropsychology 08/2014; 39(6):440-458. · 2.90 Impact Factor
  • Jérôme Prado, Rachna Mutreja, James R Booth
    [Show abstract] [Hide abstract]
    ABSTRACT: Mastering single-digit arithmetic during school years is commonly thought to depend upon an increasing reliance on verbally memorized facts. An alternative model, however, posits that fluency in single-digit arithmetic might also be achieved via the increasing use of efficient calculation procedures. To test between these hypotheses, we used a cross-sectional design to measure the neural activity associated with single-digit subtraction and multiplication in 34 children from 2nd to 7th grade. The neural correlates of language and numerical processing were also identified in each child via localizer scans. Although multiplication and subtraction were undistinguishable in terms of behavior, we found a striking developmental dissociation in their neural correlates. First, we observed grade-related increases of activity for multiplication, but not for subtraction, in a language-related region of the left temporal cortex. Second, we found grade-related increases of activity for subtraction, but not for multiplication, in a region of the right parietal cortex involved in the procedural manipulation of numerical quantities. The present results suggest that fluency in simple arithmetic in children may be achieved by both increasing reliance on verbal retrieval and by greater use of efficient quantity-based procedures, depending on the operation.
    Developmental Science 07/2014; 17(4):537-52. · 3.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Greater skill in solving single-digit multiplication problems requires a progressive shift from a reliance on numerical to verbal mechanisms over development. Children with math learning disability (MD), however, are thought to suffer from a specific impairment in numerical mechanisms. Here we tested the hypothesis that this impairment might prevent MD children from transitioning towards verbal mechanisms when solving single-digit multiplication problems. Brain activations during multiplication problems were compared in MD and typically developing (TD) children (3rd to 7th graders) in numerical and verbal regions which were individuated by independent localizer tasks. We used small (e.g. 2 x 3) and large (e.g. 7 x 9) problems as these problems likely differ in their reliance on verbal versus numerical mechanisms. Results indicate that MD children have reduced activations in both the verbal (i.e. left inferior frontal gyrus and left middle temporal to superior temporal gyri) and the numerical (i.e. right superior parietal lobule including intra-parietal sulcus) regions suggesting that both mechanisms are impaired. Moreover, the only reliable activation observed for MD children was in the numerical region when solving small problems. This suggests that MD children could effectively engage numerical mechanisms only for the easier problems. Conversely, TD children showed a modulation of activation with problem size in the verbal regions. This suggests that TD children were effectively engaging verbal mechanisms for the easier problems. Moreover, TD children with better language skills were more effective at engaging verbal mechanisms. In conclusion, results suggest that the numerical and language related processes involved in solving multiplication problems are impaired in MD children.
    Cortex 01/2014; · 6.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiplication problems involving large numbers (e.g., 9 × 8) are more difficult to solve than problems involving small numbers (e.g., 2 × 3). Behavioral research indicates that this problem-size effect might be due to different factors across countries and educational systems. However, there is no neuroimaging evidence supporting this hypothesis. Here, we compared the neural correlates of the multiplication problem-size effect in adults educated in China and the United States. We found a greater neural problem-size effect in Chinese than American participants in bilateral superior temporal regions associated with phonological processing. However, we found a greater neural problem-size effect in American than Chinese participants in right intra-parietal sulcus (IPS) associated with calculation procedures. Therefore, while the multiplication problem-size effect might be a verbal retrieval effect in Chinese as compared to American participants, it may instead stem from the use of calculation procedures in American as compared to Chinese participants. Our results indicate that differences in educational practices might affect the neural bases of symbolic arithmetic.
    Frontiers in Human Neuroscience 01/2013; 7:189. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is now well established that communicators interpret others' mental states through what has been called "Theory of Mind" (ToM). From a linguistic-pragmatics perspective, this mentalizing ability is considered critical because it is assumed that the linguistic code in all utterances underdetermines the speaker's meaning, leaving a vital role for ToM to fill the gap. From a neuroscience perspective, understanding others' intentions has been shown to activate a neural ToM network that includes the right and left temporal parietal junction (rTPJ, lTPJ), the medial prefrontal cortex (MPFC) and the precuneus (PC). Surprisingly, however, there are no studies - to our knowledge - that aim to uncover a direct, on-line link between language processing and ToM through neuroimaging. This is why we focus on verbal irony, an obviously pragmatic phenomenon that compels a listener to detect the speaker's (dissociated, mocking) attitude (Wilson, 2009). In the present fMRI investigation, we compare participants' comprehension of 18 target sentences as contexts make them either ironic or literal. Consider an opera singer who tells her interlocutor: "Tonight we gave a superb performance!" when the performance in question was clearly awful (making the statement ironic) or very good (making the statement literal). We demonstrate that the ToM network becomes active while a participant is understanding verbal irony. Moreover, we demonstrate - through Psychophysiological Interactions (PPI) analyses - that ToM activity is directly linked with language comprehension processes. The paradigm, its predictions, and the reported results contrast dramatically with those from seven prior fMRI studies on irony.
    NeuroImage 07/2012; 63(1):25-39. · 6.25 Impact Factor
  • Daniel H Weissman, Jérôme Prado
    [Show abstract] [Hide abstract]
    ABSTRACT: To enable unexpected shifts of covert visual spatial attention, a ventral attention network is thought to dampen activity in a dorsal attention network that maintains the current focus of attention. However, direct evidence to support this view is scarce. In the present study, we investigated this hypothesis by asking healthy young adults to perform a covert visual spatial attention task while their brain activity was recorded with functional magnetic resonance imaging (fMRI). In each trial, participants discriminated the orientation of a target-colored letter in the cued visual field (valid trials) or, occasionally, in the uncued visual field (invalid trials). Consistent with prior work, the ventral attention network was more active in invalid trials than in valid trials. Most importantly, functional connectivity analyses revealed that an increase of activity in the right inferior frontal gyrus (a key region of the ventral attention network) was linked to smaller increases of activity in (a) the right inferior parietal lobe (a key region of the dorsal attention network) and (b) the left dorsolateral prefrontal cortex and dorsal anterior cingulate cortex (other regions enabling the control of attention) in invalid trials, relative to valid trials. These findings provide novel support for the view that key regions of the ventral attention network help to enable unexpected shifts of covert visual spatial attention by dampening activity in brain regions that participate in maintaining the current focus of attention.
    NeuroImage 03/2012; 61(4):798-804. · 6.25 Impact Factor
  • Jérôme Prado, Rachna Mutreja, James R Booth
    [Show abstract] [Hide abstract]
    ABSTRACT: It has long been suggested that transitive reasoning relies on spatial representations in the posterior parietal cortex (PPC). Previous neuroimaging studies, however, have always focused on linear arguments, such as "John is taller than Tom, Tom is taller than Chris, therefore John is taller than Chris." Using functional magnetic resonance imaging (fMRI), we demonstrate here that verbal representations contribute to transitive reasoning when it involves set-inclusion relations (e.g., "All Tulips are Flowers, All Flowers are Plants, therefore All Tulips are Plants"). In the present study, such arguments were found to engage verbal processing regions of the left inferior frontal gyrus (IFG) and left PPC that were identified in an independent localizer task. Specifically, activity in these verbal regions increased as the number of relations increased in set-inclusion arguments. Importantly, this effect was specific to set-inclusion arguments because left IFG and left PPC were not differentially engaged when the number of relations increased in linear arguments. Instead, such an increase was linked to decreased activity in a spatial processing region of the right PPC that was identified in an independent localizer task. Therefore, both verbal and spatial representations can underlie transitive reasoning, but their engagement depends upon the structure of the argument.
    Cerebral Cortex 01/2012; · 6.83 Impact Factor
  • Source
    Jérôme Prado, Angad Chadha, James R Booth
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the course of the past decade, contradictory claims have been made regarding the neural bases of deductive reasoning. Researchers have been puzzled by apparent inconsistencies in the literature. Some have even questioned the effectiveness of the methodology used to study the neural bases of deductive reasoning. However, the idea that neuroimaging findings are inconsistent is not based on any quantitative evidence. Here, we report the results of a quantitative meta-analysis of 28 neuroimaging studies of deductive reasoning published between 1997 and 2010, combining 382 participants. Consistent areas of activations across studies were identified using the multilevel kernel density analysis method. We found that results from neuroimaging studies are more consistent than what has been previously assumed. Overall, studies consistently report activations in specific regions of a left fronto-parietal system, as well as in the left BG. This brain system can be decomposed into three subsystems that are specific to particular types of deductive arguments: relational, categorical, and propositional. These dissociations explain inconstancies in the literature. However, they are incompatible with the notion that deductive reasoning is supported by a single cognitive system relying either on visuospatial or rule-based mechanisms. Our findings provide critical insight into the cognitive organization of deductive reasoning and need to be accounted for by cognitive theories.
    Journal of Cognitive Neuroscience 05/2011; 23(11):3483-97. · 4.49 Impact Factor
  • Source
    Jérôme Prado, Daniel H Weissman
    [Show abstract] [Hide abstract]
    ABSTRACT: According to the default-mode interference hypothesis, suboptimal performance in tasks requiring selective attention occurs when off-task processing (e.g., mind wandering) supported by default-mode regions interferes with on-task processing (e.g., attention) enabled by task-positive regions. In the present functional MRI study, we therefore investigated whether suboptimal performance in a selective attention task was linked to heightened interactions between a key default-mode region (the posterior cingulate cortex; PCC) and a key task-positive region (the left dorsolateral prefrontal cortex; DLPFC). We also investigated whether heightened interactions between the PCC and the left DLPFC were linked to enhanced future performance, consistent with prior data suggesting that such interactions index adaptive changes to the cognitive system. In line with both of these predictions, increases of current-trial functional connectivity between the PCC and the left DLPFC were linked to increases of response time in the current trial (i.e., suboptimal performance), but to decreases of response time in the next trial (i.e., enhanced performance). This double dissociation provides novel support for the default-mode interference hypothesis. Moreover, it suggests the possibility that, in at least some cases, default-mode interference indexes processes that optimize future performance.
    NeuroImage 03/2011; 56(4):2276-82. · 6.25 Impact Factor
  • Source
    Jérôme Prado, Daniel H Weissman
    [Show abstract] [Hide abstract]
    ABSTRACT: Variations of response time (RT) in selective attention tasks are often associated with variations of activity and functional connectivity in sensory cortices that process relevant stimuli. Here, we investigated whether such relationships are influenced by spatial attention. To investigate this hypothesis, we asked fourteen healthy adults to perform a covert spatial attention task, which made use of bilateral stimulus displays, while we recorded their brain activity using functional magnetic resonance imaging (fMRI). As expected, activity in the middle occipital gyrus increased when spatial attention was directed to the contralateral (versus the ipsilateral) visual field. Surprisingly, variations of RT were not associated with variations in the magnitude of this attentional enhancement. As predicted, however, they were linked to opposing variations of functional connectivity between middle occipital regions contralateral (but not ispilateral) to the attended visual field and the left fusiform gyrus, which is thought to figure prominently in the perceptual processing of visually presented letters. These findings suggest that trial-by-trial variations of RT reflect, at least partially, trial-by-trial variations in the extent to which spatial attention enhances functional connectivity between sensory regions that process relevant stimuli.
    NeuroImage 01/2011; 54(1):465-73. · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been proposed that recent cultural inventions such as symbolic arithmetic recycle evolutionary older neural mechanisms. A central assumption of this hypothesis is that the degree to which a preexisting mechanism is recycled depends on the degree of similarity between its initial function and the novel task. To test this assumption, we investigated whether the brain region involved in magnitude comparison in the intraparietal sulcus (IPS), localized by a numerosity comparison task, is recruited to a greater degree by arithmetic problems that involve number comparison (single-digit subtractions) than by problems that involve retrieving number facts from memory (single-digit multiplications). Our results confirmed that subtractions are associated with greater activity in the IPS than multiplications, whereas multiplications elicit greater activity than subtractions in regions involved in verbal processing including the middle temporal gyrus (MTG) and inferior frontal gyrus (IFG) that were localized by a phonological processing task. Pattern analyses further indicated that the neural mechanisms more active for subtraction than multiplication in the IPS overlap with those involved in numerosity comparison and that the strength of this overlap predicts interindividual performance in the subtraction task. These findings provide novel evidence that elementary arithmetic relies on the cooption of evolutionary older neural circuits.
    Human Brain Mapping 01/2011; 32(11):1932-47. · 6.88 Impact Factor
  • Source
    Jérôme Prado, Joshua Carp, Daniel H Weissman
    [Show abstract] [Hide abstract]
    ABSTRACT: Although variations of response time (RT) within a particular experimental condition are typically ignored, they may sometimes reflect meaningful changes in the efficiency of cognitive and neural processes. In the present study, we investigated whether trial-by-trial variations of response time (RT) in a cross-modal selective attention task were associated with variations of functional connectivity between brain regions that are thought to underlie attention. Sixteen healthy young adults performed an audiovisual selective attention task, which involved attending to a relevant visual letter while ignoring an irrelevant auditory letter, as we recorded their brain activity using functional magnetic resonance imaging (fMRI). In line with predictions, variations of RT were associated with variations of functional connectivity between the anterior cingulate cortex and various other brain regions that are posited to underlie attentional control, such as the right dorsolateral prefrontal cortex and bilateral regions of the posterior parietal cortex. They were also linked to variations of functional connectivity between anatomically early and anatomically late regions of the relevant-modality visual cortex whose communication is thought to be modulated by attentional control processes. By revealing that variations of RT in a selective attention task are linked to variations of functional connectivity in the attentional network, the present findings suggest that variations of attention may contribute to trial-by-trial fluctuations of behavioral performance.
    NeuroImage 01/2011; 54(1):541-9. · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deductive reasoning is traditionally viewed as a unitary process involving either rule-based or visuo-spatial mechanisms. However, there is a disagreement in the neuroimaging literature on whether the data support one alternative over the other. Here we test the hypothesis that discrepancies in the literature result from the reasoning materials themselves. Using functional magnetic resonance imaging, we measure brain activity of participants while they integrate the premises of conditional arguments (primarily Modus Tollens: If P then Q; not-Q) and Relational Syllogisms (i.e., linear arguments of the sort P is to the left of Q; Q is to the left of R). We find that reasoning with Modus Tollens activates the left inferior frontal gyrus to a greater extent than the Relational Syllogisms. In contrast, the Relational Syllogisms engage the right temporo-parieto-occipital junction more than conditional arguments. This suggests that conditional reasoning relies more on so-called syntactic processes than relational reasoning, while relational reasoning may rely on visuo-spatial processes and mental imagery more than conditional reasoning. This investigative approach, together with its results, clarifies some apparently inconsistent findings in this literature by showing that the nature of the logical argument, whether it is relational or conditional, determines which neural system is engaged.
    NeuroImage 03/2010; 51(3):1213-21. · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is a familiar and intuitive notion that human numerical and logical reasoning skills are tightly related. However, very little is known about the interaction between numerical knowledge and logical reasoning in the brain. Using functional magnetic resonance imaging in healthy subjects, we investigated ordered relations as they are expressed in number (4 is greater than 2) and in transitive reasoning (A is to the left of C after receiving; A is to the left of B; B is to the left of C) in order to determine the extent to which the same neural substrates support both. We found that representing an ordered series verbally learned by transitive reasoning draws on the representations of numbers in the anterior intraparietal sulcus. We further observed that, unlike numbers, transitive series are additionally encoded in the basal ganglia-dopamine system. Intraparietal and basal ganglia mechanisms are not active to the same extent at the same time. Although the intraparietal representations of number preferentially supports a verbal transitive series soon after learning, the basal ganglia are engaged when the series is well practiced. This finding suggests that the transient activation of number representations supports the representation of verbal transitive series until their late encoding in the basal ganglia-dopamine system by associative reinforcement mechanisms.
    Cerebral Cortex 08/2009; 20(3):720-9. · 6.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Relational reasoning (A > B, B > C, therefore A > C) shares a number of similarities with numerical cognition, including a common behavioural signature, the symbolic distance effect. Just as reaction times for evaluating relational conclusions decrease as the distance between two ordered objects increases, people need less time to compare two numbers when they are distant (e.g., 2 and 8) than when they are close (e.g., 3 and 4). Given that some remain doubtful about such analogical representations in relational reasoning, we determine whether numerical cognition and relational reasoning have other overlapping behavioural effects. Here, using relational reasoning problems that require the alignment of six items, we provide evidence showing that the subjects' linear mental representation affects motor performance when evaluating conclusions. Items accessible from the left part of a linear representation are evaluated faster when the response is made by the left, rather than the right, hand and the reverse is observed for items accessible from the right part of the linear representation. This effect, observed with the prepositions to the left of and to the right of as well as with above and below, is analogous to the SNARC (Spatial Numerical Association of Response Codes) effect, which is characterized by an interaction between magnitude of numbers and side of response.
    Quarterly journal of experimental psychology (2006) 08/2008; 61(8):1143-50. · 1.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is more difficult for reasoners to detect that the letter-number pair H7 verifies the conditional rule If there is not a T then there is not a 4 than to detect that it verifies the rule If there is an H then there is a 7. In prior work [Prado, J., & Noveck, I. A. (2007). Overcoming perceptual features in logical reasoning: a parametric functional magnetic resonance imaging study. Journal of Cognitive Neuroscience 19(4), 642-657], we argued that this difficulty was due to mismatching effects, i.e. perceptual mismatches that arise when the items mentioned in the rule (e.g. T and 4) mismatch those presented in the test-pair (H and 7). The present study aimed to test this claim directly by recording ERPs while participants evaluated conditional rules in the presence or absence of mismatches. We found that mismatches, not only trigger a frontocentral N2 (an ERP known to be related to perceptual mismatch) but that they, parametrically modulate its amplitude (e.g. two mismatches prompt a greater N2 than one). Our results indicate that the main role of negations in conditional rules is to focus attention on the negated constituent but also suggest that there is some inter-individual differences in the way participants apprehend such negations, as indicated by a correlation between N2 amplitude and participants' reaction times. Overall, these findings emphasize how overcoming perceptual features plays a role in the mismatching effect and extend the mismatch-related effects of the N2 into a reasoning task.
    Neuropsychologia 06/2008; 46(11):2629-37. · 3.48 Impact Factor
  • Source
    Jérôme Prado, Ira A Noveck
    [Show abstract] [Hide abstract]
    ABSTRACT: Participants experience difficulty detecting that an item depicting an H-in-a-square confirms the logical rule, "If there is not a T then there is not a circle." Indeed, there is a perceptual conflict between the items mentioned in the rule (T and circle) and in the test item (H and square). Much evidence supports the claim that correct responding depends on detecting and resolving such conflicts. One aim of this study is to find more precise neurological evidence in support of this claim by using a parametric event-related functional magnetic resonance imaging (fMRI) paradigm. We scanned 20 participants while they were required to judge whether or not a conditional rule was verified (or falsified) by a corresponding target item. We found that the right middorsolateral prefrontal cortex (mid-DLPFC) was specifically engaged, together with the medial frontal (anterior cingulate and presupplementary motor area [pre-SMA]) and parietal cortices, when mismatching was present. Activity in these regions was also linearly correlated with the level of mismatch between the rule and the test item. Furthermore, a psychophysiological interaction analysis revealed that activation of the mid-DLPFC, which increases as mismatching does, was accompanied by a decrease in functional integration with the bilateral primary visual cortex and an increase in functional integration with the right parietal cortex. This indicates a need to break away from perceptual cues in order to select an appropriate logical response. These findings strongly indicate that the regions involved in inhibitory control (including the right mid-DLPFC and the medial frontal cortex) are engaged when participants have to overcome perceptual mismatches in order to provide a logical response. These findings are also consistent with neuroimaging studies investigating the belief bias, where prior beliefs similarly interfere with logical reasoning.
    Journal of Cognitive Neuroscience 05/2007; 19(4):642-57. · 4.49 Impact Factor
  • Source
    Ira A. Noveck, Jérôme Prado
    [Show abstract] [Hide abstract]
    ABSTRACT: Lest the conjunction “intelligence and reasoning” seduce readers into supposing that the two are of a piece, we point out that analyses made at the superset level concerning intelligence do not readily align with or outperform the scientific advances made via investigations of reasoning, which at best can be viewed as a subset of intelligent behaviour.
    Behavioral and Brain Sciences 03/2007; 30(02):163 - 164. · 18.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lesions of the posterior parietal cortex in humans can produce a specific disruption of visually guided hand movements termed optic ataxia. The fact that the deficit mainly occurs in peripheral vision suggests that reaching in foveal and extrafoveal vision relies on two different anatomical substrates. Using fMRI in healthy subjects, the authors demonstrated the existence of two systems, differently modulated by the two reaching conditions. Reaching in central vision involves a restricted network, including the medial intraparietal sulcus (mIPS) and the caudal part of the dorsal premotor cortex (PMd). Reaching in peripheral vision engages a more extensive network, including the parieto-occipital junction (POJ). Interestingly, POJ corresponds to the site of the lesion overlap that the authors recently found to be responsible for optic ataxia. These two sets of results converge to show that there is not a unique cortical network for reaching control but instead two systems engaged in reaching to targets in the central and peripheral visual field.
    The Neuroscientist 03/2007; 13(1):22-7. · 5.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parietal lesions in humans can produce a specific disruption of visually guided hand movement, termed optic ataxia. The fact that the deficit mainly occurs in peripheral vision suggests that reaching in foveal and extrafoveal vision rely on two different neural substrates. In the present study, we have directly tested this hypothesis by event-related fMRI in healthy subjects. Brain activity was measured when participants reached toward central or peripheral visual targets. Our results confirm the existence of two systems, differently modulated by the two conditions. Reaching in central vision involved a restricted network including the medial intraparietal sulcus (mIPS) and the caudal part of the dorsal premotor cortex (PMd). Reaching in peripheral vision activated in addition the parieto-occipital junction (POJ) and a more rostral part of PMd. These results show that reaching to the peripheral visual field engages a more extensive cortical network than reaching to the central visual field.
    Neuron 01/2006; 48(5):849-58. · 15.77 Impact Factor

Publication Stats

341 Citations
129.27 Total Impact Points

Institutions

  • 2010–2014
    • Northwestern University
      Evanston, Illinois, United States
  • 2006–2013
    • French National Centre for Scientific Research
      • Institut des sciences cognitives
      Lutetia Parisorum, Île-de-France, France
  • 2009–2012
    • University of Michigan
      • Department of Psychology
      Ann Arbor, MI, United States
  • 2007–2012
    • University of Lyon
      Lyons, Rhône-Alpes, France
    • Claude Bernard University Lyon 1
      Villeurbanne, Rhône-Alpes, France