Are you Katrin Klippert?

Claim your profile

Publications (4)13.41 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parvovirus B19 (B19V) is the most commonly detected virus in endomyocardial biopsies (EMBs) from patients with inflammatory cardiomyopathy (DCMi). Despite the importance of T-cells in antiviral defense, little is known about the role of B19V specific T-cells in this entity. An exceptionally high B19V viral load in EMBs (115,091 viral copies/mug nucleic acids), peripheral blood mononuclear cells (PBMCs) and serum was measured in a DCMi patient at initial presentation, suggesting B19V viremia. The B19V viral load in EMBs had decreased substantially 6 and 12 months afterwards, and was not traceable in PBMCs and the serum at these times. Using pools of overlapping peptides spanning the whole B19V proteome, strong CD8(+) T-cell responses were elicited to the 10-amino-acid peptides SALKLAIYKA (19.7% of all CD8(+) cells) and QSALKLAIYK (10%) and additional weaker responses to GLCPHCINVG (0.71%) and LLHTDFEQVM (0.06%). Real-time RT-PCR of IFNgamma secretion-assay-enriched T-cells responding to the peptides, SALKLAIYKA and GLCPHCINVG, revealed a disproportionately high T-cell receptor Vbeta (TRBV) 11 expression in this population. Furthermore, dominant expression of type-1 (IFNgamma, IL2, IL27 and T-bet) and of cytotoxic T-cell markers (Perforin and Granzyme B) was found, whereas gene expression indicating type-2 (IL4, GATA3) and regulatory T-cells (FoxP3) was low. Our results indicate that B19V Ag-specific CD8(+) T-cells with effector function are involved in B19V associated DCMi. In particular, a dominant role of TRBV11 and type-1/CTL effector cells in the T-cell mediated antiviral immune response is suggested. The persistence of B19V in the endomyocardium is a likely antigen source for the maintenance of CD8(+) T-cell responses to the identified epitopes.
    PLoS ONE 06/2008; 3(6):e2361. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Due to the limited RNA amounts from endomyocardial biopsies (EMBs) and low expression levels of certain genes, gene expression analyses by conventional real-time RT-PCR are restrained in EMBs. We applied two preamplification techniques, the TaqMan(R) PreAmp Master Mix (T-PreAmp) and a multiplex preamplification following a sequence specific reverse transcription (SSRT-PreAmp). T-PreAmp encompassing 92 gene assays with 14 cycles resulted in a mean improvement of 7.24 +/- 0.33 Ct values. The coefficients for inter- (1.89 +/- 0.48%) and intra-assay variation (0.85 +/- 0.45%) were low for all gene assays tested (<4%). The PreAmp uniformity values related to the reference gene CDKN1B for 91 of the investigated gene assays (except for CD56) were -0.38 +/- 0.33, without significant differences between self-designed and ABI inventoried Taqman(R) gene assays. Only two of the tested Taqman(R) ABI inventoried gene assays (HPRT-ABI and CD56) did not maintain PreAmp uniformity levels between -1.5 and +1.5. In comparison, the SSRT-PreAmp tested on 8 self-designed gene assays yielded higher Ct improvement (9.76 +/- 2.45), however was not as robust regarding the maintenance of PreAmp uniformity related to HPRT-CCM (-3.29 +/- 2.40; p < 0.0001), and demonstrated comparable intra-assay CVs (1.47 +/- 0.74), albeit higher inter-assay CVs (5.38 +/- 2.06; p = 0.01). Comparing EMBs from each 10 patients with dilated cardiomyopathy (DCM) and inflammatory cardiomyopathy (DCMi), T-PreAmp real-time RT-PCR analyses revealed differential regulation regarding 27 (30%) of the investigated 90 genes related to both HPRT-CCM and CDKN1B. Ct values of HPRT and CDKN1B did not differ in equal RNA amounts from explanted DCM and donor hearts. In comparison to the SSRT-PreAmp, T-PreAmp enables a relatively simple workflow, and results in a robust PreAmp of multiple target genes (at least 92 gene assays as tested here) by a mean Ct improvement around 7 cycles, and in a lower inter-assay variance in RNA derived from EMBs. Preliminary analyses comparing EMBs from DCM and DCMi patients, revealing differential regulation regarding 30% of the investigated genes, confirm that T-PreAmp is a suitable tool to perform gene expression analyses in EMBs, expanding gene expression investigations with the limited RNA/cDNA amounts derived from EMBs. CDKN1B, in addition to its function as a reference gene for the calculation of PreAmp uniformity, might serve as a suitable housekeeping gene for real-time RT-PCR analyses of myocardial tissues.
    BMC Molecular Biology 01/2008; 9:3. · 2.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The polymorphic family of killer-cell immunoglobulin-like receptors (KIRs) consists of activating and inhibitory receptors expressed by natural killer (NK) cells and effector T cells that recognize human leukocyte antigen (HLA) class I ligands. It has been suggested that KIR/HLA incompatibility exerts beneficial effects in hematopoietic stem cell transplantation. To elucidate whether certain receptor-ligand combinations between recipient KIR and donor HLA antigens lead to enhanced alloreactivity of NK cells associated with acute rejection (aRx) after kidney transplantation, we analyzed the entirety of matches/mismatches between KIR genes and known HLA ligands for aRx patients (n=105) compared to patients with stable renal function (n=119). Whereas HLA-C ligand incompatibility between donor and recipient has no influence on aRx, grafts derived from donors homozygous for HLA-C group 2 alleles seem to demonstrate a better outcome (P=0.052). Additionally, a higher number of inhibitory receptors in the recipient's genotype (P=0.042), a significant higher number of matches for the receptors KIR2DL2/DS2 (P=0.004), as well as a higher number of mismatches for KIR2DL3 (P=0.014) could be observed for patients with stable renal function. Our data illustrate that certain KIR/HLA class I ligand combinations between donor and recipient might influence graft short-term outcome after renal transplantation.
    Transplantation 01/2008; 84(11):1527-33. · 3.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interferon-gamma (IFN-gamma) plays a key role in the induction and maintenance of immunity against intracellular infectious agents. Compared to other species, little is known about the biology of this cytokine in the guinea pig (Cavia porcellus). We found that in contrast to humans and mice, IFN-gamma in the guinea pig did not induce the antiviral state, which in other species leads to protection of IFN-gamma -stimulated fibroblasts from the cytopathic effect (CPE) of subsequent viral infections. As an alternative strategy to detect and quantify guinea pig IFN-gamma activity in vitro, a reporter system using guinea pig fibroblasts transfected with a luciferase gene, which is regulated by an IFN-stimulated response element (ISRE), was established. With the help of the highly sensitive reporter assay system, the biologic activity of recombinant guinea pig IFN-gamma (GpIFN-gamma, from prokaryotic and eukaryotic expression systems was detected. The response to both native and recombinant GpIFN-gamma was inhibited by a rabbit antiserum directed against the recombinant cytokine expressed in Escherichia coli, demonstrating structural and functional homology of native and recombinant GpIFN-gamma. Stimulation with GpIFN-gamma, obtained from transfected cells, induced upregulation of MHC class I expression in a guinea pig fibroblast line. The restricted activity of GpIFN-gamma might have implications for this species' ability to control infections with intracellular pathogens.
    Journal of Interferon & Cytokine Research 05/2007; 27(4):305-15. · 3.30 Impact Factor