Martina Mitrovic

Medical University of Graz, Graz, Styria, Austria

Are you Martina Mitrovic?

Claim your profile

Publications (4)13.83 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transient receptor potential ankyrin 1 (TRPA1) channels are expressed by primary afferent neurones and activated by irritant chemicals including allyl isothiocyanate (AITC). Here we investigated whether intracolonic AITC causes afferent input to the spinal cord and whether this response is modified by mild colitis, morphine or a TRPA1 channel blocker. One hour after intracolonic administration of AITC to female mice, afferent signalling was visualized by expression of c-Fos in laminae I-II(o) of the spinal dorsal horn at sacral segment S1. Mild colitis was induced by dextran sulphate sodium (DSS) added to drinking water for 1 week. Relative to vehicle, AITC (2%) increased expression of c-Fos in the spinal cord. Following induction of mild colitis by DSS (2%), spinal c-Fos responses to AITC, but not vehicle, were augmented by 41%. Colonic inflammation was present (increased myeloperoxidase content and disease activity score), whereas colonic histology, locomotion, feeding and drinking remained unchanged. Morphine (10 mg.kg(-1)) or the TRPA1 channel blocker HC-030031 (300 mg.kg(-1)) inhibited the spinal c-Fos response to AITC, in control and DSS-pretreated animals, whereas the response to intracolonic capsaicin (5%) was blocked by morphine but not HC-030031. Activation of colonic TRPA1 channels is signalled to the spinal cord. Mild colitis enhanced this afferent input that, as it is sensitive to morphine, is most likely of a chemonociceptive nature. As several irritant chemicals can be present in chyme, TRPA1 channels may mediate several gastrointestinal pain conditions.
    British Journal of Pharmacology 07/2010; 160(6):1430-42. · 5.07 Impact Factor
  • Alzheimers & Dementia - ALZHEIMERS DEMENT. 01/2009; 5(4).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gastric acid challenge of the rat and mouse stomach is signalled to the brainstem as revealed by expression of c-Fos. The molecular sensors relevant to the detection of gastric mucosal acidosis are not known. Since the acid-sensing ion channels ASIC2 and ASIC3 are expressed by primary afferent neurons, we examined whether knockout of the ASIC2 or ASIC3 gene modifies afferent signalling of a gastric acid insult in the normal and inflamed stomach. The stomach of conscious mice (C57BL/6) was challenged with intragastric HCl; two hours later the activation of neurons in the nucleus tractus solitarii (NTS) of the brainstem was visualized by c-Fos immunocytochemistry. Mild gastritis was induced by addition of iodoacetamide (0.1%) to the drinking water for 7 days. Exposure of the gastric mucosa to HCl (0.25M) caused a 3-fold increase in the number of c-Fos-positive neurons in the NTS. This afferent input to the NTS remained unchanged by ASIC3 knockout, whereas ASIC2 knockout augmented the c-Fos response to gastric HCl challenge by 33% (P<0.01). Pretreatment of wild-type mice with iodoacetamide induced mild gastritis, as revealed by increased myeloperoxidase activity, and enhanced the number of NTS neurons responding to gastric HCl challenge by 41% (P<0.01). This gastric acid hyperresponsiveness was absent in ASIC3 knockout mice but fully preserved in ASIC2 knockout mice. The current data indicate that ASIC3 plays a major role in the acid hyperresponsiveness associated with experimental gastritis. In contrast, ASIC2 appears to dampen acid-evoked input from the stomach to the NTS.
    Pain 02/2008; 134(3):245-53. · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acid challenge of the gastric mucosa is signaled to the brainstem. This study examined whether mild gastritis due to dextrane sulfate sodium (DSS) or iodoacetamide (IAA) enhances gastric acid-evoked input to the brainstem and whether this effect is related to gastric myeloperoxidase activity, gastric histology, gastric volume retention or cyclooxygenase stimulation. The stomach of conscious mice was challenged with NaCl (0.15 M) or HCl (0.15 and 0.25 M) administered via gastric gavage. Two hours later, activation of neurons in the nucleus tractus solitarii (NTS) was visualized by c-Fos immunocytochemistry. Gastritis was induced by DSS (molecular weight 8000; 5%) or IAA (0.1%) added to the drinking water for 7 days. Relative to NaCl, intragastric HCl increased the number of c-Fos protein-expressing cells in the NTS. Pretreatment with DSS or IAA for 1 week did not alter the c-Fos response to NaCl but significantly enhanced the response to HCl by 54 and 74%, respectively. Either pretreatment elevated gastric myeloperoxidase activity and induced histological injury of the mucosal surface. In addition, DSS caused dilation of the gastric glands and damage to the parietal cells. HCl-induced gastric volume retention was not altered by IAA but attenuated by DSS pretreatment. Indomethacin (5 mg/kg) failed to significantly alter HCl-evoked expression of c-Fos in the NTS of control, DSS-pretreated and IAA-pretreated mice. We conclude that the gastritis-evoked increase in the gastric acid-evoked c-Fos expression in the NTS is related to disruption of the gastric mucosal barrier, mucosal inflammation, mucosal acid influx and enhanced activation of the afferent stomach-NTS axis.
    Neuroscience 04/2007; 145(3):1108-19. · 3.12 Impact Factor

Publication Stats

45 Citations
13.83 Total Impact Points

Institutions

  • 2010
    • Medical University of Graz
      • Institut für Experimentelle und Klinische Pharmakologie
      Graz, Styria, Austria