Lianying Liu

Beijing University of Chemical Technology, Peping, Beijing, China

Are you Lianying Liu?

Claim your profile

Publications (15)30.89 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel strategy, based on surface‐initiated grafting polymerization and post‐polymerization thiol‐yne click chemistry, with Ir(ppy)3 as a sole photoredox catalyst, under visible light irradiation is developed. The “livingness” of the grafting polymerization is demonstrated by the linear increase of the graft yield with irradiation time and the block grafting polymerization. Then, acetenyl groups of poly(propargyl methacrylate) (PPMA) grafting chains are reacted with pentaerythritoltetra‐(3‐mercaptopropionate) via the thiol‐yne click reaction. The successful introduction of reactive thiol groups onto the low‐density polyethylene‐graft‐poly(propargyl methacrylate) (LDPE‐g‐PPMA) films is demonstrated by Fourier transform IR (FTIR) and X‐ray photoelectron spectra (XPS) spectroscopy, and the thiol‐ene click reaction with N‐(1‐pyrenyl) maleimide. With tris(2‐phenylpyridine)iridium (Ir(ppy)3) as a photoredox catalyst, visible‐light‐induced surface‐initiated controlled grafting polymerization and thiol‐yne click chemistry are exploited to functionalize a polymer substrate. This technology offers a robust tool to attach a high concentration of desired functional groups onto the surface of polymeric materials.
    Macromolecular Chemistry and Physics 05/2014; · 2.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: When dispersion polymerization of styrene (St) had run for 3h, after particle rapidly growing stage, 4,4'-dimethacryloyloxybenzophenone (DMABP) cross-linker was added to reaction system and photoreactive, core(PSt)-shell(Poly(St-co-DMABP)) particles with rich benzophenone (BP) groups on surface were prepared. Polymerization of DMABP could occurred mainly on the preformed core of PSt because its diffusion could be impeded by (1) compactness of particles formed at the moment of cross-linker addition (more than 80% of monomer had been consumed, particles were no longer fully swollen by monomer), (2) reduced polarity of continuous phase, and (3) immediate occurrence of cross-linking. Subsequently, photoreactive, cross-linked hollow particles were yielded by removal of uncross-linked core in THF. SEM and TEM observation demonstrated the formation of core-shell structure and improvement of shell thickness when DMABP content increased. UV-vis spectra analysis on polymer dissolved in THF indicated that there is no polymer of DMABP in core. FTIR spectra analysis and XPS measurement further revealed that BP component on particle surface was enriched when amount of DMABP increased. Finally, an anti-fouling polymer (poly (ethylene glycol), PEG) and protein of mouse IgG was immobilized on particle surface under UV irradiation, as confirmed by FTIR spectra analysis, SEM observation and TMB color reaction.
    Journal of Colloid and Interface Science 08/2012; 389(1):126-33. · 3.17 Impact Factor
  • Xiaofang Yang, Lianying Liu, Wantai Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: By exploringly introducing a bicationic viologen, N-hexyl-N'-(4-vinylbenzyl)-4,4′-bipyridinium bromide chloride (HVV) to dispersion polymerization of styrene (St) in a mixture of methanol and water, we achieved the following results: (1) monodisperse, core-shell microspheres with antibacterial surface were prepared by a simple one-step procedure, (2) diameter, core radii and shell thickness of resultant particles could be controlled by concentrations of HVV, monomer and initiator, and composition of media, (3) HVV could act not only as a monomer as that in previous modifications, but also as an efficient, novel stabilizer, and its copolymerization with St at interfacial layer and coagglutination of (co-)oligomers on core surface due to its moderate reactivity and hydrophilicity were conceived to be main reasons for formation of core-shell structures. Effects of HVV on polymerization behavior of St, evolution of core-shell structure, and morphology, size of particles were investigated. Moreover, antibacterial activity of resulted microspheres against Staphylococcus aureus was assayed.
    Polymer. 05/2012; 53(11):2190–2196.
  • Source
    Yuhong Ma, Lianying Liu, Wantai Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: This feature article covers the fundamental chemistry and applications of photo-induced living surface grafting polymerization. The mechanism of activation of inert alkyl C–H bonds of polymer substrates, the structures of the active free radical and reversible dormant species, the modes of the grafting chain growth (including linear, branched and cross-linked variants), and the role of spatial effect are discussed. Two technologies, i.e., 1-step and 2-step processes, their features and applications in fabricating polymer brushes with precisely controlled patterns, desired functions, branched and block grafting chains on planar substrates, and polymer lamination are presented. The fabrication of 3-dimensional covalently bonded polymer particles, such as nano-sized polymer particle monolayers (with uniform and bimodal distributions), discrete solid and hollow polymer particles of micrometer size, and multilayer polymer particles on polymeric substrates are also introduced. In the last part, the application of photo-induced living surface grafting polymerization in non-planar surface modifications, such as the preparation of core–shell polymer particles, Janus particles and cross-linked hydrogels with hairy polymer chains is summarized.
    Polymer. 09/2011; 52(19):4159–4173.
  • Fen Zhang, Yuhong Ma, Lianying Liu, Wantai Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: This article presents observations of three polymerization modes of a self-developed cation-charge-stabilized styrene/water/methanol dispersion polymerization system: (1) a water/methanol (20/80) system, corresponding to a typical dispersion polymerization mode where the particle nucleation occurred in the solution phase and growth in the particle phase; (2) a pure CH(3)OH system, including a first nucleation in the solution phase with growth by absorption of the small particles and polymers formed in this phase, and a secondary nucleation with growth in the particle phase, when high molecular weight copolymers appeared in the solution phase; and (3) a water/methanol (5/95) system, similar to the conventional dispersion polymerization mode during the first 90 min, with subsequent epitaxial growth. Interestingly, the metastable state of the nucleation stage, including minuscule 6-nm particles, their aggregates, and the aggregating process, was first observed experimentally. By quantitatively following the relationship of the deposited molecular weight and the nucleation/growth process in the three systems, it was proposed that the molecular weight of the deposited polymer had to reach a specific high value before they could absorb or capture monomer to form smooth/spherical nuclei or particles.
    The Journal of Physical Chemistry B 09/2010; 114(34):10970-8. · 3.61 Impact Factor
  • Shengjie Lv, Lianying Liu, Wantai Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: There exists a great number of publications concerning the synthesis of core-shell and/or hairy particles by means of controlled/living polymerization. Nevertheless, how to fabricate ultrafine nanosized hairy particles, especially polymeric soft hairy particles, remains a significant challenge. This paper presents a simple self-developed approach consisting of a two-step photoinduced polymerization of cross-linked polyacrylamide (CLPAM) soft hydrogel nanoparticles (5-10 nm in diameter) grafted with poly(N-isopropylacrylamide) (PNIPAm) chains. The architecture of such ultrafine soft water-swollen CLPAM@PNIPAm core/shell nanoparticles (20-35 nm in diameter) demonstrated very specific temperature sensitive behaviors. During heating a fast association process was observed at approximately 33-34 degrees C and the singular hairy particles with 34 nm diameters clustered into aggregates that were approximately 120 nm in diameter. Raising the temperature further, however, led to a decrease in size to about 100 nm at 45 degrees C. This behavior was attributed to the formation of hydrophobic shell layers accompanying the shrinkage of PNIPAm chains with chain polar transformations. With the contraction pressure produced by further shrinkage of the hydrophobic shell layers, the soft fully swollen PAM cores expelled water and diminished in size. During the cooling process, these contracted cores that were trapped in the aggregates gave rise to an early dissociation. The hydrophilic hairy CLPAM@PNIPAm particles are believed to be potentially useful as carriers to specific target regions, e.g., cells for controlled drug delivery and other smart biomaterial applications.
    Langmuir 10/2009; 26(3):2076-82. · 4.38 Impact Factor
  • Lianying Liu, Mingwei Ren, Wantai Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: Polymeric Janus particles are obtained by UV-induced selective surface grafting polymerizations and coupling reactions, in virtue of the light-absorption of photoreactive materials such as the immobilized photoinitiator and spread photoinitiator solution on the surfaces exposed to UV light and the sheltering of densely arrayed immovable particles from light. Varying the monomers or macromolecules applied in photografting polymerization or coupling reaction, and choosing diverse polymeric particles of various size, bicolor and amphiphilic Janus particles could be successfully achieved. Observations by fluorescence microscope, scanning electron microscope ,and transmission electron microscope confirmed the asymmetrical morphology of the resultant Janus particles.
    Langmuir 07/2009; 25(18):11048-53. · 4.38 Impact Factor
  • Hui Meng, Lianying Liu, Wantai Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: In virtue of the reversible coupling and cleaving mechanism involved isopropylthioxanthone (ITX), a precursor of poly(methyl methacrylate) ended with ITX residues (PMMA-ITXH) was firstly synthesized through the photopolymerization of methyl methacrylate (MMA) initiated by a binary system of ITX and ethyl-p-dimethyl amino benzoate (EDAB), and secondly, applying this precursor as a macroinitiator, block copolymer of poly(methyl methacrylate) and polystyrene (PMMA-b-PSt) was produced through a thermal activated radical polymerization of styrene (St) at a temperature above 80°C. The content of incorporation of the reduced ITX groups in the precursor was estimated by UV-vis spectrum analysis and the results indicated that it was greatly influenced by the ITX concentration in system. The presence of EDAB could promote the polymerization and result in high monomer conversions and low molecular weight of polymers with wide distributions, but had no evident effect on the incorporation of reduced ITX moieties in polymer. Furthermore, more monomer supplied in system was advantageous for the production of high molecular weight of polymers and provided apparently low content of reduced ITX residues in polymer. Using a selected precursor of PMMA-ITXH with a moderate level of reduced ITX residues, molecular weight and its distribution, the bulk polymerization of St was initiated. FTIR spectrum analysis and GPC measurement confirmed the formation of block copolymer of PMMA-b-PSt.
    Journal of Macromolecular Science Part A 01/2009; 46(9):921-927. · 0.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As one of the major techniques developed to achieve surface modification of polymeric materials, UV-induced surface graft polymerization has been widely applied as a simple, useful and versatile approach to improve the surface properties of polymers. This review surveys the recent advances in UV light induced surface graft polymerizations, predominantly focusing on: (1) various initiating methods, controlled/living grafting, self-initiated grafting (grafting without the addition of photoinitiators), graft polymerizations with monomer pairs able to form charge transfer (CT) complexes, grafting in liquid, vapor and bulk phase, and the substrates used for grafting; (2) the topography of grafted surface layers, including granular structure, crosslinked structure, and well-defined structure; and (3) the application of techniques to prepare functionalized polymer surfaces with designed performances, e.g., to obtain polymer materials suitable for biomedical applications, membranes or microfluidics.
    Progress in Polymer Science - PROG POLYM SCI. 01/2009; 34(2):156-193.
  • Source
    Qin Wang, Lianying Liu, Wantai Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: The grafting polymerization of styrene on the surface of commercial available vulcanized acrylonitrile butadiene rubber (NBR) latex was initiated by the heat decomposing cleavage of dormant groups of semipinacol (SP) immobilized firstly under UV irradiation. Extremely high grafting efficiency in the range from about 90% to nearly 100% could be achieved. Certain factors affinitive to the grafting polymerization, such as the concentration of monomer, the UV irradiation time taking on the immobilization of SP groups, and concentration of NBR latex containing SP groups, were investigated. It was noted that there was the highest conversion when the weight ratio of NBR and St was 4:6; the grafting polymerization had a constant grafting efficiency that was almost not affected by polymerization time and the ratio of NBR-SP/St. Furthermore, the morphologies of the thermal compression molded composites of NBR/NBR-g-PSt were observed by TEM and the thermal properties as well as tensile behaviors were examined. Obviously rubber-plastic transition could be displayed with the increasing of grafting yield. When the grafting yield was controlled at about 50%, the strength of modified rubbers increased significantly without losing its elongation.
    Polymer Journal 01/2008; 40(3):192-197. · 1.50 Impact Factor
  • Lifu Wang, Yibing Yu, Lianying Liu, Wantai Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: A surface photografting polymerization (λ > 300 nm) of a multifunctional monomer which was trimethylolpropane triacrylate (TMPTA), was conducted with benzophenone (BP) as photoinitiator and LDPE as model substrate, in mixed solvents containing tetrahydrofuran (THF) and water. Proved by ATR-IR, highly crosslinked grafted layer was generated rapidly under UV irradiation. Effects on percent conversion of grafting are detailed with, such as feed ratio of BP to TMPTA, mass percent of TMPTA in the reaction system, mass percent of water in the mixed solvents and addition of the second monomer, methyl methacrylate (MMA). As both verified by SEM and AFM, relatively planar grafted layer was produced when photografting was carried out merely in THF; adding water in the reaction system caused the formation of “craters” in the grafted layer. In addition, effects of mass percent of water in the mixed solvents, UV irradiation time, TMPTA concentration and addition of MMA on the size, shape and quantity of the “craters” were investigated by SEM. A plausible mechanism for the formation of “craters” is also proposed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007
    Journal of Applied Polymer Science 06/2007; 106(1):621 - 629. · 1.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A fresh multilayer film was fabricated on a molecular level and successfully tethered to the surface of a hydroxylated organic substrate via chemical bonding assembly (CBA). Sulfate anion groups (SO4-) were preintroduced onto the surface of biaxially oriented polypropylene (BOPP) films via a reference method. Upon hydrolysis of the SO4- groups, hydroxyl groups (--OH) were formed that subsequently acted as initial reagents for a series of alternate reactions with terephthalyl chloride (TPC) and bisphenol A (BPA). A stable and well-defined multilayer film was thus fabricated via the CBA method. As a result of the nanoscale multilayer fresh film being abundant with reactive groups, it is believed that the film and its fabrication method should provide a fundamental platform for further surface functionalization and direct the design of advanced materials with desired properties.
    Langmuir 03/2007; 23(4):1810-4. · 4.38 Impact Factor
  • Qin Wang, Lianying Liu, Wantai Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: With the commercially available vulcanized acrylonitrile butadiene rubber (NBR) latex as a model, a facile approach for the preparation of composite core–shell particles was developed. As the first step, UV photoreduction followed by cross-linking/coupling reactions with benzophenone (BP) as the photoinitiator and trimethylpropane triacrylate (TMPTA) as the accelerator were carried out in order to attach dormant semi-pinacol groups to the surface of the NBR particles (NBR–SP). The second step, carried out under heating, involved the grafting of styrene (St) which was induced from the particle surface by bond breaking of NBR–SP and propagation towards the center of the particles. The grafting efficiency could be kept at a high level, i.e. approx. 90%, and the grafting yield increased with time (could reach up to 140%). Finally, by adding acrylamide (AM) or N-vinyl pyrrolidone (NVP) as a second monomer under heating, a composite core–shell particle could be prepared.
    Polymer. 01/2007; 48(22):6581-6588.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Summary Grafting polymerization of acrylonitrile onto low density polyethylene film was studied further following the earlier work [1]. A novel and effective method was developed to directly determine the number of end-groups, i.e. phenyls at the end of grafted chains with UV-vis spectroscopy; according to the number of phenyl end-groups and the weight of grafted polymers, grafting chain length and density were estimated; investigations indicated both of these two parameters could be practically controlled.
    Polymer Bulletin 01/2006; 57(6):833-841. · 1.33 Impact Factor
  • Source
    Lianying Liu, Wantai Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: The kinetics of photoinitiated, inverse emulsion polymerization of acrylamide with 2,2-dimethoxy-2-phenylacetophenone (DMPA) as a photoinitiator was investigated under three different cases. First, in a quartz reactor transparent to full UV light, the polymerization rate (Rp) increased and then decreased with the change of initiator order from 0.27 to a negative value when the DMPA concentration was increased, and it was particularly unusual that monomer orders at different DMPA concentrations were lower than the first. Second, for polymerization without DMPA in a quartz reactor, the dependence of Rp on monomer concentration was similar to that of Rp on initiator concentration in the aforementioned case. Third, when polymerization was carried out in a Pyrex reactor where the far UV light was filtered, a peak rate was also observed, and initiator orders varied from 0.24 to a negative value; however, under this case monomer orders at different initiator concentrations were greater than the first. These results indicated that the effect of absorbance often observed in bulk or solution photopolymerization also existed in this system, and the self-initiation of monomer had some influence on polymerization, and the role of primary radical termination could not be neglected, as evidenced by kinetic analysis. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 846–852, 2004
    Journal of Polymer Science Part A Polymer Chemistry 01/2004; 42(4):846 - 852. · 3.54 Impact Factor