Karine Magalon

Aix-Marseille Université, Marsiglia, Provence-Alpes-Côte d'Azur, France

Are you Karine Magalon?

Claim your profile

Publications (6)28.52 Total impact

  • Source
    Brousse Béatrice · Karine Magalon · Durbec Pascale · Myriam Cayre ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Myelin regeneration can occur in the brain following demyelination. Parenchymal oligodendrocyte progenitors (pOPC) are known to play a crucial role in this process. Neural stem cells (NSC) residing in the ventricular-subventricular zone (V-SVZ) also have the ability to generate oligodendrocytes but their contribution to endogenous myelin repair was so far considered to be negligible. Here, we addressed the relative contribution of pOPC and V-SVZ-derived neural progenitors (SVZdNP) to remyelination in cuprizone mouse models of acute or chronic corpus callosum (CC) demyelination. Using genetic tracing, we uncover an unexpected massive and precocious recruitment of SVZdNP in the anterior CC after acute demyelination. These cells very quickly adopt an oligodendrocytic fate and robustly generate myelinating cells as efficiently as pOPC do. In more posterior areas of the CC, SVZdNP recruitment is less important whereas pOPC contribute more, underlining a regionalization in the mobilization of these two cell populations. Strikingly, in a chronic model when demyelination insult is sustained in time, SVZdNP minimally contribute to myelin repair, a failure associated with a depletion of NSC and a drastic drop of progenitor cell proliferation in V-SVZ. In this context, pOPC remain reactive, and become the main contributors to myelin regeneration. Altogether our results highlight a region and context-dependent contribution of SVZdNP to myelin repair that can equal pOPC. They also raise the question of a possible exhaustion of V-SVZ proliferation potential in chronic pathologies. © 2015. Published by The Company of Biologists Ltd.
    Biology Open 07/2015; 4(8). DOI:10.1242/bio.012773 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ciliary neurotrophic factor (CNTF) has been shown to be expressed after brain lesions and in particular after demyelination. Here, we addressed the role of this cytokine in the regulation of neural progenitor migration in the adult rodent brain. Using an acute model of demyelination, we show that CNTF is strongly re-expressed after lesion and is involved in the postlesional mobilization of endogenous progenitors that participate in the myelin regenerative process. We show that CNTF controls the migration of subventricular zone (SVZ)-derived neural progenitors toward the demyelinated corpus callosum. Furthermore, an ectopic source of CNTF in adult healthy brains changes SVZ-derived neural progenitors' migratory behavior that migrate toward the source by activation of the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway. Using various in vitro assays (Boyden chambers, explants, and video time-lapse imaging), we demonstrate that CNTF controls the directed migration of SVZ-derived progenitors and oligodendrocyte precursors. Altogether, these results demonstrate that in addition to its neuroprotective activity and its role in progenitor survival and maturation, CNTF acts as a chemoattractant and participates in the recruitment of endogenous progenitors during myelin repair.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 02/2013; 33(7):3240-50. DOI:10.1523/JNEUROSCI.2579-12.2013 · 6.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis is a neurodegenerative disease characterized by episodes of immune attack of oligodendrocytes leading to demyelination and progressive functional deficit. One therapeutic strategy to address disease progression could consist in stimulating the spontaneous regenerative process observed in some patients. Myelin regeneration requires endogenous oligodendrocyte progenitor migration and activation of the myelination program at the lesion site. In this study, we have tested the ability of olesoxime, a neuroprotective and neuroregenerative agent, to promote remyelination in the rodent central nervous system in vivo. The effect of olesoxime on oligodendrocyte progenitor cell (OPC) differentiation and myelin synthesis was tested directly in organotypic slice cultures and OPC-neuron cocultures. Using naive animals and different mouse models of demyelination, we morphologically and functionally assessed the effect of the compound on myelination in vivo. Olesoxime accelerated oligodendrocyte maturation and enhanced myelination in vitro and in vivo in naive animals during development and also in the adult brain without affecting oligodendrocyte survival or proliferation. In mouse models of demyelination and remyelination, olesoxime favored the repair process, promoting myelin formation with consequent functional improvement. Our observations support the strategy of promoting oligodendrocyte maturation and myelin synthesis to enhance myelin repair and functional recovery. We also provide proof of concept that olesoxime could be useful for the treatment of demyelinating diseases.
    Annals of Neurology 02/2012; 71(2):213-26. DOI:10.1002/ana.22593 · 9.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the signals that control migration of neural progenitor cells in the adult brain may provide new therapeutic opportunities. Reelin is best known for its role in regulating cell migration during brain development, but we now demonstrate a novel function for reelin in the injured adult brain. First, we show that Reelin is upregulated around lesions. Second, experimentally increasing Reelin expression levels in healthy mouse brain leads to a change in the migratory behavior of subventricular zone-derived progenitors, triggering them to leave the rostral migratory stream (RMS) to which they are normally restricted during their migration to the olfactory bulb. Third, we reveal that Reelin increases endogenous progenitor cell dispersal in periventricular structures independently of any chemoattraction but via cell detachment and chemokinetic action, and thereby potentiates spontaneous cell recruitment to demyelination lesions in the corpus callosum. Conversely, animals lacking Reelin signaling exhibit reduced endogenous progenitor recruitment at the lesion site. Altogether, these results demonstrate that beyond its known role during brain development, Reelin is a key player in post-lesional cell migration in the adult brain. Finally our findings provide proof of concept that allowing progenitors to escape from the RMS is a potential therapeutic approach to promote myelin repair.
    PLoS ONE 05/2011; 6(5):e20430. DOI:10.1371/journal.pone.0020430 · 3.23 Impact Factor
  • Source
    Cristina Cantarella · Myriam Cayre · Karine Magalon · Pascale Durbec ·
    [Show abstract] [Hide abstract]
    ABSTRACT: In the adult rodent brain, the subventricular zone (SVZ) represents a special niche for neural stem cells; these cells proliferate and generate neural progenitors. Most of these migrate along the rostral migratory stream to the olfactory bulb, where they differentiate into interneurons. SVZ-derived progenitors can also be recruited spontaneously to damaged brain areas to replace lost cells, including oligodendrocytes in demyelinated lesions. In this study, we searched for factors able to enhance this spontaneous recruitment of endogenous progenitors. Previous studies have suggested that epidermal growth factor (EGF) could stimulate proliferation, migration, and glial differentiation of SVZ progenitors. In the present study we examined EGF influence on endogenous SVZ cell participation to brain repair in the context of demyelinated lesions. We induced a focal demyelinated lesion in the corpus callosum by lysolecithin injection and showed that intranasal heparin-binding epidermal growth factor (HB-EGF) administration induces a significant increase in SVZ cell proliferation together with a stronger SVZ cell mobilization toward the lesions. Besides, HB-EGF causes a shift of SVZ-derived progenitor cell differentiation toward the astrocytic lineage. However, due to the threefold increase in cell recruitment by EGF treatment, the absolute number of SVZ-derived oligodendrocytes in the lesion of treated mice is higher than in controls. These results suggest that enhancing SVZ cell proliferation could be part of future strategies to promote SVZ progenitor cell mobilization toward brain lesions.
    Developmental Neurobiology 02/2008; 68(2):223-36. DOI:10.1002/dneu.20588 · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since the discovery of adult neural stem cells, mobilization of endogenous stem cells from the subventricular zone (SVZ) emerges as a promising strategy to promote brain repair. Here, we examined the effect of environment enrichment on SVZ cell mobilization in demyelinating pathologies. We showed that enriched housing conditions reduced functional impairment in experimental autoimmune encephalomyelitis (EAE), a rodent model of multiple sclerosis. Furthermore, both in a focal demyelination model (lysolecithin injection) and in the inflammatory EAE model, SVZ mitotic activity and the number of SVZ-derived cells in demyelinated areas were significantly increased by environment enrichment. Enriched housing conditions also promoted the oligodendrocyte fate of SVZ-recruited cells in the EAE lesions. Altogether our results show that environment enrichment provides beneficial conditions to promote the mobilization of neural progenitors into demyelinating lesions and to favour functional recovery.
    European Journal of Neuroscience 03/2007; 25(3):761-71. DOI:10.1111/j.1460-9568.2007.05335.x · 3.18 Impact Factor

Publication Stats

123 Citations
28.52 Total Impact Points


  • 2012-2015
    • Aix-Marseille Université
      Marsiglia, Provence-Alpes-Côte d'Azur, France
  • 2011-2013
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France