Are you Seiji Nakamura?

Claim your profile

Publications (2)9.69 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Myocardin (Mycd), which is essential for the differentiation of the smooth muscle cell lineage, is constitutively located in the nucleus, although its family members, myocardin-related transcription factors A and B (MRTF-A/B), mostly reside in the cytoplasm and translocate to the nucleus in response to Rho signaling. The mechanism for their nuclear import is unclear. Here we investigated the mechanism for the nuclear import of Mycd family members and demonstrated any correlation between such mechanism and the phenotype of vascular smooth muscle cells (VSMCs). In cultured VSMCs, the knockdown of importin β1 inhibited the nuclear import of Mycd and MRTF-A/B. Their NH(2)-terminal basic domain was identified as a binding site for importin α/β1 by in vitro analyses. However, Mycd had a higher affinity for importin α/β1 than did MRTF-A/B, even in the absence of G-actin, and Mycd affinity for importin α1/β1 was stronger than for any other importin α/β1 heterodimers. The binding of Mycd to importin α/β1 was insensitive to G-actin, whereas that of MRTF-A/B was differently inhibited by G-actin. In dedifferentiated VSMCs, the levels of importins α1 and β1 were reduced concomitant with down-regulation of Mycd, serum response factor, and smooth muscle cell markers. By contrast, in differentiated VSMCs, their expressions were up-regulated. Thus, the nuclear import of Mycd family members in VSMCs depends on importin α/β1, and their relative affinities for importin α/β1 heterodimers determine Mycd nuclear import. The expression of Mycd nuclear import machineries is related to the expression levels of VSMC phenotype-dependent smooth muscle cell markers.
    Journal of Biological Chemistry 11/2010; 285(48):37314-23. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the onset and progression of atherosclerosis, the vascular smooth muscle cell (VSMC) phenotype changes from differentiated to dedifferentiated, and in some cases, this change is accompanied by osteogenic transition, resulting in vascular calcification. One characteristic of dedifferentiated VSMCs is the down-regulation of smooth muscle cell (SMC) marker gene expression. Bone morphogenetic proteins (BMPs), which are involved in the induction of osteogenic gene expression, are detected in calcified vasculature. In this study, we found that the BMP2-, BMP4-, and BMP6-induced expression of Msx transcription factors (Msx1 and Msx2) preceded the down-regulation of SMC marker expression in cultured differentiated VSMCs. Either Msx1 or Msx2 markedly reduced the myocardin-dependent promoter activities of SMC marker genes (SM22alpha and caldesmon). We further investigated interactions between Msx1 and myocardin/serum response factor (SRF)/CArG-box motif (cis element for SRF) using coimmunoprecipitation, gel-shift, and chromatin immunoprecipitation assays. Our results showed that Msx1 or Msx2 formed a ternary complex with SRF and myocardin and inhibited the binding of SRF or SRF/myocardin to the CArG-box motif, resulting in inhibition of their transcription.
    Molecular and Cellular Biology 01/2007; 26(24):9456-70. · 5.04 Impact Factor