Matthew E Hurles

Wellcome Trust Sanger Institute, Cambridge, England, United Kingdom

Are you Matthew E Hurles?

Claim your profile

Publications (151)2307.65 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Structural fetal anomalies identified on prenatal ultrasound occur in 3% of pregnancies and a genetic diagnosis can help inform the pregnancy management and future reproductive decisions. The science behind prenatal genetic diagnostics is moving at a rapid pace. Conventional G-band karyotyping is being replaced by chromosome microarray analysis (CMA), which allows much greater resolution of the fetal chromosomes. CMA is being utilised increasingly when a structural anomaly is found on ultrasound scan. Our review focuses on the "next step", the use of exome sequencing to give more prognostic information in these cases. The drawbacks and ethical dilemmas of the testing are discussed. We also review published research in the use of prenatal exome sequencing and describe current UK lead research in this important area.
    Ultrasound in Obstetrics and Gynecology 08/2014; · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene expression is a heritable cellular phenotype that defines the function of a cell and can lead to diseases in case of misregulation. In order to detect genetic variations affecting gene expression, we performed association analysis of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) with gene expression measured in 869 lymphoblastoid cell lines of the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort in cis and in trans. We discovered that 3,534 genes (false discovery rate (FDR) = 5%) are affected by an expression quantitative trait locus (eQTL) in cis and 48 genes are affected in trans. We observed that CNVs are more likely to be eQTLs than SNPs. In addition, we found that variants associated to complex traits and diseases are enriched for trans-eQTLs and that trans-eQTLs are enriched for cis-eQTLs. As a variant affecting both a gene in cis and in trans suggests that the cis gene is functionally linked to the trans gene expression, we looked specifically for trans effects of cis-eQTLs. We discovered that 26 cis-eQTLs are associated to 92 genes in trans with the cis-eQTLs of the transcriptions factors BATF3 and HMX2 affecting the most genes. We then explored if the variation of the level of expression of the cis genes were causally affecting the level of expression of the trans genes and discovered several causal relationships between variation in the level of expression of the cis gene and variation of the level of expression of the trans gene. This analysis shows that a large sample size allows the discovery of secondary effects of human variations on gene expression that can be used to construct short directed gene regulatory networks.
    PLoS Genetics 07/2014; 10(7):e1004461. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We identified four different missense mutations in the single-exon gene MAB21L2 in eight individuals with bilateral eye malformations from five unrelated families via three independent exome sequencing projects. Three mutational events altered the same amino acid (Arg51), and two were identical de novo mutations (c.151C>T [p.Arg51Cys]) in unrelated children with bilateral anophthalmia, intellectual disability, and rhizomelic skeletal dysplasia. c.152G>A (p.Arg51His) segregated with autosomal-dominant bilateral colobomatous microphthalmia in a large multiplex family. The fourth heterozygous mutation (c.145G>A [p.Glu49Lys]) affected an amino acid within two residues of Arg51 in an adult male with bilateral colobomata. In a fifth family, a homozygous mutation (c.740G>A [p.Arg247Gln]) altering a different region of the protein was identified in two male siblings with bilateral retinal colobomata. In mouse embryos, Mab21l2 showed strong expression in the developing eye, pharyngeal arches, and limb bud. As predicted by structural homology, wild-type MAB21L2 bound single-stranded RNA, whereas this activity was lost in all altered forms of the protein. MAB21L2 had no detectable nucleotidyltransferase activity in vitro, and its function remains unknown. Induced expression of wild-type MAB21L2 in human embryonic kidney 293 cells increased phospho-ERK (pERK1/2) signaling. Compared to the wild-type and p.Arg247Gln proteins, the proteins with the Glu49 and Arg51 variants had increased stability. Abnormal persistence of pERK1/2 signaling in MAB21L2-expressing cells during development is a plausible pathogenic mechanism for the heterozygous mutations. The phenotype associated with the homozygous mutation might be a consequence of complete loss of MAB21L2 RNA binding, although the cellular function of this interaction remains unknown.
    The American Journal of Human Genetics 06/2014; 94:915-23. · 11.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We identified four different missense mutations in the single-exon gene MAB21L2 in eight individuals with bilateral eye malformations from five unrelated families via three independent exome sequencing projects. Three mutational events altered the same amino acid (Arg51), and two were identical de novo mutations (c.151C>T [p.Arg51Cys]) in unrelated children with bilateral anophthalmia, intellectual disability, and rhizomelic skeletal dysplasia. c.152G>A (p.Arg51His) segregated with autosomal-dominant bilateral colobomatous microphthalmia in a large multiplex family. The fourth heterozygous mutation (c.145G>A [p.Glu49Lys]) affected an amino acid within two residues of Arg51 in an adult male with bilateral colobomata. In a fifth family, a homozygous mutation (c.740G>A [p.Arg247Gln]) altering a different region of the protein was identified in two male siblings with bilateral retinal colobomata. In mouse embryos, Mab21l2 showed strong expression in the developing eye, pharyngeal arches, and limb bud. As predicted by structural homology, wild-type MAB21L2 bound single-stranded RNA, whereas this activity was lost in all altered forms of the protein. MAB21L2 had no detectable nucleotidyltransferase activity in vitro, and its function remains unknown. Induced expression of wild-type MAB21L2 in human embryonic kidney 293 cells increased phospho-ERK (pERK1/2) signaling. Compared to the wild-type and p.Arg247Gln proteins, the proteins with the Glu49 and Arg51 variants had increased stability. Abnormal persistence of pERK1/2 signaling in MAB21L2-expressing cells during development is a plausible pathogenic mechanism for the heterozygous mutations. The phenotype associated with the homozygous mutation might be a consequence of complete loss of MAB21L2 RNA binding, although the cellular function of this interaction remains unknown.
    The American Journal of Human Genetics 06/2014; 94(6):915-923. · 11.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWAS) for type 1 diabetes (T1D) have successfully identified more than 40 independent T1D associated tagging single nucleotide polymorphisms (SNPs). However, owing to technical limitations of copy number variants (CNVs) genotyping assays, the assessment of the role of CNVs has been limited to the subset of these in high linkage disequilibrium with tag SNPs. The contribution of untagged CNVs, often multi-allelic and difficult to genotype using existing assays, to the heritability of T1D remains an open question. To investigate this issue, we designed a custom comparative genetic hybridization array (aCGH) specifically designed to assay untagged CNV loci identified from a variety of sources. To overcome the technical limitations of the case control design for this class of CNVs, we genotyped the Type 1 Diabetes Genetics Consortium (T1DGC) family resource (representing 3,903 transmissions from parents to affected offspring) and used an association testing strategy that does not necessitate obtaining discrete genotypes. Our design targeted 4,309 CNVs, of which 3,410 passed stringent quality control filters. As a positive control, the scan confirmed the known T1D association at the INS locus by direct typing of the 5' variable number of tandem repeat (VNTR) locus. Our results clarify the fact that the disease association is indistinguishable from the two main polymorphic allele classes of the INS VNTR, class I-and class III. We also identified novel technical artifacts resulting into spurious associations at the somatically rearranging loci, T cell receptor, TCRA/TCRD and TCRB, and Immunoglobulin heavy chain, IGH, loci on chromosomes 14q11.2, 7q34 and 14q32.33, respectively. However, our data did not identify novel T1D loci. Our results do not support a major role of untagged CNVs in T1D heritability.
    PLoS Genetics 05/2014; 10(5):e1004367. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Congenital heart defects (CHDs) are the most common birth defect worldwide and are a leading cause of neonatal mortality. Nonsyndromic atrioventricular septal defects (AVSDs) are an important subtype of CHDs for which the genetic architecture is poorly understood. We performed exome sequencing in 13 parent-offspring trios and 112 unrelated individuals with nonsyndromic AVSDs and identified five rare missense variants (two of which arose de novo) in the highly conserved gene NR2F2, a very significant enrichment (p = 7.7 × 10(-7)) compared to 5,194 control subjects. We identified three additional CHD-affected families with other variants in NR2F2 including a de novo balanced chromosomal translocation, a de novo substitution disrupting a splice donor site, and a 3 bp duplication that cosegregated in a multiplex family. NR2F2 encodes a pleiotropic developmental transcription factor, and decreased dosage of NR2F2 in mice has been shown to result in abnormal development of atrioventricular septa. Via luciferase assays, we showed that all six coding sequence variants observed in individuals significantly alter the activity of NR2F2 on target promoters.
    The American Journal of Human Genetics 04/2014; 94(4):574-85. · 11.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To identify further Mendelian causes of intellectual disability (ID), we screened a cohort of 996 individuals with ID for variants in 565 known or candidate genes by using a targeted next-generation sequencing approach. Seven loss-of-function (LoF) mutations-four nonsense (c.1195A>T [p.Lys399(∗)], c.1333C>T [p.Arg445(∗)], c.1866C>G [p.Tyr622(∗)], and c.3001C>T [p.Arg1001(∗)]) and three frameshift (c.2177_2178del [p.Thr726Asnfs(∗)39], c.3771dup [p.Ser1258Glufs(∗)65], and c.3856del [p.Ser1286Leufs(∗)84])-were identified in SETD5, a gene predicted to encode a methyltransferase. All mutations were compatible with de novo dominant inheritance. The affected individuals had moderate to severe ID with additional variable features of brachycephaly; a prominent high forehead with synophrys or striking full and broad eyebrows; a long, thin, and tubular nose; long, narrow upslanting palpebral fissures; and large, fleshy low-set ears. Skeletal anomalies, including significant leg-length discrepancy, were a frequent finding in two individuals. Congenital heart defects, inguinal hernia, or hypospadias were also reported. Behavioral problems, including obsessive-compulsive disorder, hand flapping with ritualized behavior, and autism, were prominent features. SETD5 lies within the critical interval for 3p25 microdeletion syndrome. The individuals with SETD5 mutations showed phenotypic similarity to those previously reported with a deletion in 3p25, and thus loss of SETD5 might be sufficient to account for many of the clinical features observed in this condition. Our findings add to the growing evidence that mutations in genes encoding methyltransferases regulating histone modification are important causes of ID. This analysis provides sufficient evidence that rare de novo LoF mutations in SETD5 are a relatively frequent (0.7%) cause of ID.
    The American Journal of Human Genetics 03/2014; · 11.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies, DNA sequencing studies, and other genomic studies are finding an increasing number of genetic variants associated with clinical phenotypes that may be useful in developing diagnostic, preventive, and treatment strategies for individual patients. However, few variants have been integrated into routine clinical practice. The reasons for this are several, but two of the most significant are limited evidence about the clinical implications of the variants and a lack of a comprehensive knowledge base that captures genetic variants, their phenotypic associations, and other pertinent phenotypic information that is openly accessible to clinical groups attempting to interpret sequencing data. As the field of medicine begins to incorporate genome-scale analysis into clinical care, approaches need to be developed for collecting and characterizing data on the clinical implications of variants, developing consensus on their actionability, and making this information available for clinical use. The National Human Genome Research Institute (NHGRI) and the Wellcome Trust thus convened a workshop to consider the processes and resources needed to: (1) identify clinically valid genetic variants; (2) decide whether they are actionable and what the action should be; and (3) provide this information for clinical use. This commentary outlines the key discussion points and recommendations from the workshop. © 2014 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part C Seminars in Medical Genetics 03/2014; · 4.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonallelic homologous recombination (NAHR) between highly similar duplicated sequences generates chromosomal deletions, duplications and inversions, which can cause diverse genetic disorders. Little is known about interindividual variation in NAHR rates and the factors that influence this. We estimated the rate of deletion at the CMT1A-REP NAHR hotspot in sperm DNA from 34 male donors, including 16 monozygotic (MZ) co-twins (8 twin pairs) aged 24 to 67 years old. The average NAHR rate was 3.5×10-5 with a seven-fold variation across individuals. Despite good statistical power to detect even a subtle correlation, we observed no relationship between age of unrelated individuals and the rate of NAHR in their sperm, likely reflecting the meiotic-specific origin of these events. We then estimated the heritability of deletion rate by calculating the intraclass correlation (ICC) within MZ co-twins, revealing a significant correlation between MZ co-twins (ICC = 0.784, p = 0.0039), with MZ co-twins being significantly more correlated than unrelated pairs. We showed that this heritability cannot be explained by variation in PRDM9, a known regulator of NAHR, or variation within the NAHR hotspot itself. We also did not detect any correlation between Body Mass Index (BMI), smoking status or alcohol intake and rate of NAHR. Our results suggest that other, as yet unidentified, genetic or environmental factors play a significant role in the regulation of NAHR and are responsible for the extensive variation in the population for the probability of fathering a child with a genomic disorder resulting from a pathogenic deletion.
    PLoS Genetics 03/2014; 10(3):e1004195. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genetic aetiology of non-aneuploid fetal structural abnormalities is typically investigated by karyotyping and array-based detection of microscopically detectable rearrangements, and submicroscopic copy number variants (CNVs), which collectively yield a pathogenic finding in up to 10% of cases. We propose that exome sequencing may substantially increase the identification of underlying aetiologies.We performed exome sequencing on a cohort of 30 non-aneuploid fetuses and neonates (along with their parents) with diverse structural abnormalities first identified by prenatal ultrasound. We identified candidate pathogenic variants with a range of inheritance models, and evaluated these in the context of detailed phenotypic information.We identified 35 de novo single nucleotide variants (SNVs), small indels, deletions or duplications, of which three (accounting for 10% of the cohort) are highly likely to be causative. These are de novo missense variants in FGFR3 and COL2A1, and a de novo 16·8 kb deletion that includes most of OFD1. In five further cases (17%) we identified de novo or inherited recessive or X-linked variants in plausible candidate genes, which require additional validation to determine pathogenicity.Our diagnostic yield of 10% is comparable to, and supplementary to, the diagnostic yield of existing microarray testing for large chromosomal rearrangements and targeted CNV detection. The de novo nature of these events could enable couples to be counselled as to their low recurrence risk. This study outlines the way for a substantial improvement in the diagnostic yield of prenatal genetic abnormalities through the application of next generation sequencing.
    Human Molecular Genetics 01/2014; · 7.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in sequencing technology allow data on the human genome to be generated more quickly and in greater detail than ever before. Such detail includes findings that may be of significance to the health of the research participant involved. Although research studies generally do not feed back information on clinically significant findings (CSFs) to participants, this stance is increasingly being questioned. There may be difficulties and risks in feeding clinically significant information back to research participants, however, the UK10K consortium sought to address these by creating a detailed management pathway. This was not intended to create any obligation upon the researchers to feed back any CSFs they discovered. Instead, it provides a mechanism to ensure that any such findings can be passed on to the participant where appropriate. This paper describes this mechanism and the specific criteria, which must be fulfilled in order for a finding and participant to qualify for feedback. This mechanism could be used by future research consortia, and may also assist in the development of sound principles for dealing with CSFs.European Journal of Human Genetics advance online publication, 15 January 2014; doi:10.1038/ejhg.2013.290.
    European journal of human genetics: EJHG 01/2014; · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Several copy number variants (CNVs) have been implicated as susceptibility factors for schizophrenia (SZ). Some of these same CNVs also increase risk for autism spectrum disorders, suggesting an etiologic overlap between these conditions. Recently, de novo duplications of a region on chromosome 7q11.23 were associated with autism spectrum disorders. The reciprocal deletion of this region causes Williams-Beuren syndrome. Methods We assayed an Ashkenazi Jewish cohort of 554 SZ cases and 1014 controls for genome-wide CNV. An excess of large rare and de novo CNVs were observed, including a 1.4 Mb duplication on chromosome 7q11.23 identified in two unrelated patients. To test whether this 7q11.23 duplication is also associated with SZ, we obtained data for 14,387 SZ cases and 28,139 controls from seven additional studies with high-resolution genome-wide CNV detection. We performed a meta-analysis, correcting for study population of origin, to assess whether the duplication is associated with SZ. Results We found duplications at 7q11.23 in 11 of 14,387 SZ cases with only 1 in 28,139 control subjects (unadjusted odds ratio 21.52, 95% confidence interval: 3.13–922.6, p value 5.5 × 10−5; adjusted odds ratio 10.8, 95% confidence interval: 1.46–79.62, p value .007). Of three SZ duplication carriers with detailed retrospective data, all showed social anxiety and language delay premorbid to SZ onset, consistent with both human studies and animal models of the 7q11.23 duplication. Conclusions We have identified a new CNV associated with SZ. Reciprocal duplication of the Williams-Beuren syndrome deletion at chromosome 7q11.23 confers an approximately tenfold increase in risk for SZ.
    Biological psychiatry 01/2014; 75(5):371–377. · 8.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exome sequence analysis of affected individuals from two families with autosomal-dominant inheritance of coloboma identified two different cosegregating heterozygous nonsense mutations (c.370C>T [p.Arg124*] and c. 1066G>T [p.Glu356*]) in YAP1. The pheno-types of the affected families differed in that one included no extraocular features and the other manifested with highly variable multisystem involvement, including hearing loss, intellectual disability, hematuria, and orofacial clefting. A combined LOD score of 4.2 was obtained for the association between YAP1 loss-of-function mutations and the phenotype in these families. YAP1 encodes an effector of the HIPPO-pathway-induced growth response, and whole-mount in situ hybridization in mouse embryos has shown that Yap1 is strongly expressed in the eye, brain, and fusing facial processes. RT-PCR showed that an alternative transcription start site (TSS) in intron 1 of YAP1 and Yap1 is widely used in human and mouse development, respectively. Transcripts from the alternative TSS are predicted to initiate at codon Met179 relative to the canonical transcript (RefSeq NM_001130145). In these alternative transcripts, the c.370C>T mutation in family 1305 is within the 5 0 UTR and cannot result in nonsense-mediated decay (NMD). The c. 1066G>T mutation in family 132 should result in NMD in transcripts from either TSS. Amelioration of the phenotype by the alter-native transcripts provides a plausible explanation for the phenotypic differences between the families.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exome sequencing of parent-offspring trios is a popular strategy to identify causative genetic variants in children with rare diseases. This method owes its strength to the leveraging of inheritance information, which facilitates de novo variant calling, inference of compound heterozygosity, and the identification of inheritance anomalies. Uniparental disomy describes the inheritance of a homologous chromosome pair from only one parent. This aberration is important to detect in genetic disease studies because it can result in imprinting disorders, and recessive diseases. We developed a software tool to detect uniparental disomy from child-mother-father genotype data that uses a binomial test to identify chromosomes with a significant burden of uniparentally-inherited genotypes. The tool is the first to read VCF-formatted genotypes, to perform integrated copy number filtering, and to use a statistical test inherently robust to platforms of varying genotyping density and noise characteristics. Simulations demonstrated superior accuracy compared with previously developed approaches. We implemented the method on 1,057 trios from the Deciphering Developmental Disorders project, a trio-based rare disease study, and detected six validated events, a significant enrichment compared with the population prevalence of UPD (1 in 3500), suggesting that most of these events are pathogenic. One of these events represents a known imprinting disorder, and exome analyses have identified rare homozygous candidate variants, mainly in the isodisomic regions of UPD chromosomes, which, among other variants, provide targets for further genetic and functional evaluation.
    Genome Research 12/2013; · 14.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial Ca2+ uptake has key roles in cell life and death. Physiological Ca2+ signaling regulates aerobic metabolism, whereas pathological Ca2+ overload triggers cell death. Mitochondrial Ca2+ uptake is mediated by the Ca2+ uniporter complex in the inner mitochondrial membrane1, 2, which comprises MCU, a Ca2+-selective ion channel, and its regulator, MICU1. Here we report mutations of MICU1 in individuals with a disease phenotype characterized by proximal myopathy, learning difficulties and a progressive extrapyramidal movement disorder. In fibroblasts from subjects with MICU1 mutations, agonist-induced mitochondrial Ca2+ uptake at low cytosolic Ca2+ concentrations was increased, and cytosolic Ca2+ signals were reduced. Although resting mitochondrial membrane potential was unchanged in MICU1-deficient cells, the mitochondrial network was severely fragmented. Whereas the pathophysiology of muscular dystrophy3 and the core myopathies4 involves abnormal mitochondrial Ca2+ handling, the phenotype associated with MICU1 deficiency is caused by a primary defect in mitochondrial Ca2+ signaling, demonstrating the crucial role of mitochondrial Ca2+ uptake in humans.
    Nature Genetics 12/2013; · 35.21 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-contain-ing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery. Primary or sensory cilia, hair-like organelles conserved as nonmotile monocilia on the surface of most cells of mam-mals, birds, amphibians, and fish, are implicated in diverse cellular signaling pathways, most prominently the hedge-hog (Hh) pathway. 1 Primary cilia extend from the cell surface, having a microtubule-based core axoneme that nucleates from, and is anchored by, a mother centriole-derived basal body, with their assembly and disassembly being tightly linked to the cell cycle. 2 A microtubule-and
    The American Journal of Human Genetics 10/2013; · 11.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The DECIPHER database (https://decipher.sanger.ac.uk/) is an accessible online repository of genetic variation with associated phenotypes that facilitates the identification and interpretation of pathogenic genetic variation in patients with rare disorders. Contributing to DECIPHER is an international consortium of >200 academic clinical centres of genetic medicine and ≥1600 clinical geneticists and diagnostic laboratory scientists. Information integrated from a variety of bioinformatics resources, coupled with visualization tools, provides a comprehensive set of tools to identify other patients with similar genotype-phenotype characteristics and highlights potentially pathogenic genes. In a significant development, we have extended DECIPHER from a database of just copy-number variants to allow upload, annotation and analysis of sequence variants such as single nucleotide variants (SNVs) and InDels. Other notable developments in DECIPHER include a purpose-built, customizable and interactive genome browser to aid combined visualization and interpretation of sequence and copy-number variation against informative datasets of pathogenic and population variation. We have also introduced several new features to our deposition and analysis interface. This article provides an update to the DECIPHER database, an earlier instance of which has been described elsewhere [Swaminathan et al. (2012) DECIPHER: web-based, community resource for clinical interpretation of rare variants in developmental disorders. Hum. Mol. Genet., 21, R37-R44].
    Nucleic Acids Research 10/2013; · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Large, rare chromosomal copy number variants (CNVs) have been shown to increase the risk for schizophrenia and other neuropsychiatric disorders including autism, attention-deficit hyperactivity disorder, learning difficulties, and epilepsy. Their role in bipolar disorder (BD) is less clear. There are no reports of an increase in large, rare CNVs in BD in general, but some have reported an increase in early-onset cases. We previously found that the rate of such CNVs in individuals with BD was not increased, even in early-onset cases. Our aim here was to examine the rate of large rare CNVs in BD in comparison with a new large independent reference sample from the same country. We studied the CNVs in a case-control sample consisting of 1,650 BD cases (reported previously) and 10,259 reference individuals without a known psychiatric disorder who took part in the original Wellcome Trust Case Control Consortium (WTCCC) study. The 10,259 reference individuals were affected with six non-psychiatric disorders (coronary artery disease, types 1 and 2 diabetes, hypertension, Crohn's disease, and rheumatoid arthritis). Affymetrix 500K array genotyping data were used to call the CNVs. The rate of CNVs > 100 kb was not statistically different between cases and controls. The rate of very large (defined as > 1 Mb) and rare (< 1%) CNVs was significantly lower in patients with BD compared with the reference group. CNV loci associated with schizophrenia were not enriched in BD and, in fact, cases of BD had the lowest number of such CNVs compared with any of the WTCCC cohorts; this finding held even for the early-onset BD cases. Schizophrenia and BD differ with respect to CNV burden and association with specific CNVs. Our findings support the hypothesis that BD is etiologically distinct from schizophrenia with respect to large, rare CNVs and the accompanying associated neurodevelopmental abnormalities.
    Bipolar Disorders 10/2013; · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ligase IV syndrome is a rare differential diagnosis for Nijmegen Breakage syndrome owing to a shared predisposition to lympho-reticular malignancies, significant microcephaly and radiation hypersensitivity. Only 16 cases with mutations in LIG4 have been described to date with phenotypes varying from malignancy in developmentally normal individuals, to severe combined immunodeficiency and early mortality. Here we report the identification of biallelic truncating LIG4 mutations in 11 patients with microcephalic primordial dwarfism presenting with restricted prenatal growth and extreme postnatal global growth failure (average OFC -10.1 s.d., height -5.1 s.d.). Subsequently most patients developed thrombocytopenia and leucopenia later in childhood and many were found to have previously unrecognised immunodeficiency following molecular diagnosis. None have yet developed malignancy, though all patients tested had cellular radiosensitivity. A genotype:phenotype correlation was also noted with position of truncating mutations corresponding to disease severity. This work extends the phenotypic spectrum associated with LIG4 mutations, establishing that extreme growth retardation with microcephaly is a common presentation of bilallelic truncating mutations. Such growth failure is therefore sufficient to consider a diagnosis of LIG4 deficiency and early recognition of such cases is important as bone marrow failure, immunodeficiency and sometimes malignancy are long term sequelae of this disorder. This article is protected by copyright. All rights reserved.
    Human Mutation 10/2013; · 5.21 Impact Factor

Publication Stats

14k Citations
2,307.65 Total Impact Points

Institutions

  • 2004–2014
    • Wellcome Trust Sanger Institute
      • Cancer Genome Project
      Cambridge, England, United Kingdom
  • 2000–2014
    • University of Cambridge
      • • Department of Applied Mathematics and Theoretical Physics
      • • McDonald Institute for Archaeological Research
      • • Department of Pathology
      Cambridge, England, United Kingdom
  • 2007–2011
    • SickKids
      • Centre of Applied Genomics (TCAG)
      Toronto, Ontario, Canada
    • University of Chicago
      • Department of Human Genetics
      Chicago, IL, United States
  • 2009
    • Baylor College of Medicine
      • Department of Molecular & Human Genetics
      Houston, TX, United States
  • 2006
    • University of Toronto
      Toronto, Ontario, Canada
  • 1999–2004
    • University of Leicester
      • Department of Genetics
      Leicester, ENG, United Kingdom
  • 2003
    • University of Oxford
      • Department of Biochemistry
      Oxford, ENG, United Kingdom